Основные проблемы, возникающие при использовании ADSL модема. Доступ в Интернет по технологии ADSL

ВведениеПо мере развития интернета для обеспечения полноценной работы в нем требовались все большие и большие скорости доступа – если сначала интернет был преимущественно текстовым, то в последние несколько лет популярность завоевали уже сервисы, связанные с передачей звука и видеоизображения в реальном времени, да и даже объемы типичной страницы, благодаря красочной графике и флэш-анимациям, выросли с единиц и десятков килобайт до сотен килобайт, а иногда и нескольких мегабайт.
Однако, если с обеспечением высокоскоростным доступом в Сеть крупных организаций каких-либо проблем не было, то предоставление домашнего доступа всегда упиралось в одно и то же – так называемую "последнюю милю". Этим термином в телефонии традиционно обозначается кабель, проложенный от некоего узла (например, телефонной станции) до абонента, то есть конечного пользователя. Проблема же заключалась в том, что стоимость прокладки такого кабеля обычно составляет от нескольких сотен до нескольких тысяч долларов, причем, очевидно, в случае подключения домашнего пользователя она целиком ложится на его плечи, делая индивидуальное высокоскоростное подключение к Сети непомерно дорогим.
По этой причине для доступа в интернет традиционно использовалась уже существующая инфраструктура, то есть обычная телефонная сеть. Действительно, ведь в современном городе телефон уже есть практически в каждой квартире, иначе говоря, если использовать телефонную линию еще и для доступа в интернет, то стоимость прокладки кабеля будет равна нулю, и клиенту придется оплатить лишь стоимость конечного оборудования, то есть модема.
Однако в городской телефонной сети, изначально предназначенной для передачи голоса, полоса частот принудительно ограничена на уровне около 4 кГц – этого более чем достаточно для привычных задач телефона, больший же частотный диапазон лишь усложнил бы работу телефонной сети (слышимость бы лишь ухудшилась из-за появления высокочастотных помех и увеличения взаимных наводок между соседними линиями). Такое ограничение, разумеется, распространяется и на передаваемые модемом сигналы, не позволяя достичь высоких скоростей передачи данных – в течение многолетнего развития модемов удалось достичь скорости всего лишь 33,6 кбит/сек.


Выше на схеме показана несколько примитивная ситуация – на практике все сколь-нибудь крупные провайдеры подключаются к телефонной сети по цифровым каналам; впрочем, 4-килогерцовый фильтр со стороны пользователя при этом все равно никуда не исчезает.
Немного улучшилась ситуация лишь с появлением стандарта V.90, позволявшего довести скорость передачи от провайдера к клиенту до 56 кбит/сек., но даже такая скорость достигалась далеко не всегда – во-первых, если между провайдером и его клиентом в телефонной сети производилось более одного преобразования сигнала из аналоговой формы в цифровую (в современных телефонных сетях сигнал между АТС передается в цифровой форме), то протокол V.90 не работал вообще; во-вторых, он оказался весьма чувствителен к качеству линии – далеко не на всех линиях, где стабильно работал V.34, удавалось получить качественную работу V.90. И, опять же, дальнейшее увеличение скорости в существующей телефонной сети было невозможно (теоретический предел составляет 64 кбит/сек., однако на практике скорость сознательно ограничивается для уменьшения взаимных помех между соседними линиями).
По мере того, как привычные модемы переставали удовлетворять нужды пользователей, стали появляться всевозможные альтернативные варианты, не использующие телефонную сеть, но так или иначе решающие проблему высокой стоимости прокладки "последней мили". Наибольшее распространение получили две технологии – радиодоступ и спутниковый доступ.
Первая технология заключалась в установке вместо проводной "последней мили" радиоканала – один приемопередатчик располагался непосредственно у клиента, второй – на расположенной неподалеку станции, которая подключалась уже к магистральному каналу, например, оптоволоконному. Увы, но такое решение опять же оказалось достаточно дорогим и отнюдь не универсальным – антенны обязательно должны были располагаться в прямой видимости друг друга, поэтому каждая базовая станция могла обслуживать лишь сравнительно небольшое число клиентов, что отрицательно влияло на стоимость подключения и дальнейшей работы.
Вторая технология – это знакомый также многим спутниковый интернет. Так как передающая спутниковая антенна весьма и весьма дорога, то для подключения домашних пользователей была разработана гибридная система, в которой нисходящий поток данных (от провайдера к пользователю) передавался через спутник и принимался обычной недорогой параболической антенной, совершенно аналогичной используемым в системах приема спутникового телевидения, а восходящий поток (от пользователя к провайдеру) передавался через привычную телефонную сеть с помощью обычного модема. Увы, но и такая система не решала большей части проблем – пользователь по-прежнему для работы в интернете вынужден был занимать телефонную линию, а скорость передачи данных от него оставляла желать лучшего, что делало невозможным, например, проведение двусторонних телеконференций. Да и с односторонней трансляцией видеосигнала могли возникнуть проблемы – передача сигнала через спутник порождала довольно заметные задержки.
Таким образом, ни одна из беспроводных (или частично беспроводных, как в случае со спутниковым интернетом) технологий так и не смогла завоевать популярность, хотя бы отдаленно сравнимую с популярностью привычного коммутируемого доступа через городскую телефонную сеть. Проводные же технологии продолжали упираться в стоимость прокладки "последней мили"...
Выход из этого тупика оказался достаточно очевиден. Ведь полосу пропускания телефонной сети ограничивает оборудование, установленное на самой АТС, в то время как от клиента к АТС идет самый обычный медный кабель, способный передавать значительно более высокие частоты, чем какие-то три килогерца... Таким образом родилась идея DSL (Digital Subscribers Line) – установить один модем, как и раньше, у пользователя, подключив его к обычной телефонной линии, а другой модем (точнее, DSLAM – DSL Access Multiplexer) – не у провайдера, а на той же АТС, к которой подключается телефонная линия пользователя, причем включить его до оборудования самой АТС. В результате между модемами оказывался фактически простой кусок провода, без каких-либо присущих телефонной сети ограничений. Разумеется, из-за необходимости установки оборудования на каждой АТС затраты на постройку и поддержание сети были заметно выше, чем в случае классического коммутируемого доступа, когда все модемы провайдера устанавливались на одной АТС, однако по сравнению со стоимостью других способов предоставления высокоскоростного доступа в интернет технология DSL оказалась не просто дешевой, а очень дешевой.


Пожалуй, единственным серьезным конкурентом для DSL была технология, использующая другую уже существующую инфраструктуру – сети кабельного телевидения. Технически их использование было более чем оправданным – ведь они изначально предназначены для передачи высокочастотного (десятки и сотни мегагерц) сигнала, однако практически распространенность кабельного телевидения намного ниже, чем телефонных сетей, что и привело к большей популярности DSL.
Технология ADSL (Asymmetric DSL) представляет собой вариант DSL, в котором доступная полоса пропускания канала распределена между нисходящим и восходящим трафиком несимметрично – для абсолютного большинства пользователей нисходящий трафик значительно более существенен, чем восходящий, поэтому предоставление для него большей части полосы пропускания вполне естественно.
Как я уже отмечал выше, обычная телефонная сеть (в англоязычной литературе она обычно обозначается аббревиатурой POTS, Plane Old Telephone System) использует полосу частот 0...4 кГц. Чтобы не мешать использованию телефонной сети по ее прямому назначению, в ADSL нижняя граница диапазона частот находится на уровне 26 кГц, то есть за пределами не только частотного диапазона телефонов, но даже за пределами возможностей человеческого слуха. Верхняя же граница, исходя из требований к скорости передачи данных и возможностей телефонного кабеля, составляет 1,1 МГц. Эта полоса пропускания делится на две части – частоты от 26 кГц до 138 кГц отведены восходящему потоку данных, а частоты от 138 кГц до 1,1 МГц – нисходящему.
Такое частотное разделение предоставляет ADSL еще одно преимущество над коммутируемым доступом – если обычный модем занимает телефонную линию, делая невозможным одновременное использование телефона и доступ в интернет, то ADSL-модем никоим образом не мешает работе телефона – Вы можете спокойно разговаривать по нему, не отключаясь от интернета, и при этом не будете ощущать никаких неудобств. Разумеется, возможны ситуации, когда либо высокочастотный сигнал ADSL-модема негативно влияет на электронику современного телефона (на старые телефоны с дисковыми номеронабирателями он, очевидно, повлиять не может – влиять там практически не на что), либо телефон из-за каких-либо особенностей своей схемотехники вносит в линию посторонний высокочастотный шум или же сильно изменяет ее АЧХ в области высоких частот; для борьбы с этим в телефонную сеть непосредственно в квартире абонента устанавливается фильтр низких частот, пропускающий к обычным телефонам только низкочастотную составляющую сигнала и устраняющий возможное влияние телефонов на линию. Отмечу, что обычный аналоговый модем, подключенный через фильтр, продолжает работать как ни в чем не бывало, так как не нуждается в каких-либо сигналах, выходящих за пределы максимально пропускаемых фильтром 4 кГц.
Вообще говоря, фильтры принято делить на микрофильтры и сплиттеры. Под первыми понимаются фильтры, включаемые непосредственно перед телефонами – между телефонной розеткой и собственно проводом, идущим к телефону (отмечу, что здесь под телефонами понимаются также и обычные аналоговые модемы), под вторыми – фильтры, включаемые на вводе телефонной сети в квартиру и разделяющие ее на две части – ADSL и обычную телефонную. Как видите, разница только в месте установки, по устройству же как микрофильтры, так и сплиттеры совершенно одинаковы, так что большого смысла акцентировать на этом внимание нет.
Разумеется, возможности кабеля не безграничны – с ростом его длины увеличивается сопротивление, в то время как ADSL-оборудование позволяет работать при сопротивлении кабеля не более 1500 Ом. Исходя из этого нетрудно определить и пределы работы ADSL – если от Вашей квартиры до АТС проложен кабель длиной более 5,2 км, то ADSL-модем имеет полное право не заработать вообще. Если же длина кабеля составляет ровно 5,2 км, то заработать он должен, но скорости выше 128 кбит/сек. не гарантируются. Идеальными же условиями считается длина кабеля не более 1,8 км – при этом ADSL-модем может развить максимальную скорость, составляющую 8 Мбит/сек. от провайдера к пользователю и 1,2 Мбит/сек. от пользователя к провайдеру. Разумеется, цифры эти ориентировочные – в каждом конкретном случае они зависят от сечения используемого в телефонной линии кабеля и его состояния (наличие разъемов и "скруток", всевозможные внешние помехи и так далее), однако практика показывает, что скорость в 1 Мбит/сек. вполне реальна для любой городской телефонной линии сколь-нибудь разумного качества. Опять же отмечу, что значение для ADSL имеет только качество провода от Вашей квартиры до АТС – все, что стоит дальше, оказывает самое непосредственное влияние на обычный коммутируемый доступ, но не имеет никакого отношения к ADSL. И пусть в Вашем районе стоит декадно-шаговая АТС постройки пятидесятых годов прошлого века, разговаривать по телефону можно только криком, а обычный модем отказывается соединяться с провайдером на скорости выше 9600 бит/сек. – если на Вашей АТС возможна установка ADSL-оборудования, то Вы имеете все шансы получить доступ в интернет со скоростью в несколько мегабит в секунду.
Выше был описан наиболее распространенный, базовый вариант ADSL, также известный под названиями G.dmt и Full rate ADSL. Однако существует и другой вариант, "облегченный", известный как G.lite или Universal ADSL. В отличие от G.dmt в нем сильно урезана полоса используемых частот и, соответственно, максимальная скорость соединения – она составляет всего лишь 1,5 Мбит/сек. "вниз" и 512 кбит/сек. "вверх". Достоинств же у G.lite два – во-первых, этот стандарт позволяет немного удешевить оборудование, во-вторых, он менее требователен к качеству линий и в большинстве случаев не требует установки фильтра, позволяя пользователю просто подключить модем к телефонной розетке, без какого-либо вмешательства в разводку телефонного провода по дому (благодаря этому G.lite иногда также называют "plug-n-play ADSL"). Впрочем, уже сейчас ADSL-модем, полностью поддерживающий как G.lite, так и G.dmt, можно купить менее чем за 50 долларов, да и не во всяких условиях при установке даже G.lite удается обойтись без фильтра – все зависит исключительно от используемых Вами телефонов и качества разводки телефонного кабеля по Вашей квартире, так что выгода от использования G.lite не столь уж высока.

Другие DSL-технологии

Помимо ADSL, существует еще несколько технологий передачи данных на базе DSL, обладающих другими характеристиками и требованиями. Во-первых, аббревиатура DSL сама по себе означает не только всю совокупность технологий, но и вполне конкретную, обеспечивающую скорость 160 кбит/сек. (строго говоря, скорость передачи данных составляет 144 кбит/сек. – два так называемых B-канала со скоростью по 64 кбит/сек. и один D-канал со скоростью 16 кбит/сек.; оставшиеся же 16 кбит/сек. представляют собой накладные расходы протокола) на расстоянии до 6 км по одной паре. "Классический" DSL использует полосу частот от 0 до 80 кГц (в некоторых реализациях – до 120 кГц), а потому несовместим с обычным телефоном. Впрочем, ничто не мешает использовать один из B-каналов для передачи оцифрованного голоса (благо оцифровка "телефонного" диапазона 0...4 кГц с разрядностью 8 бит дает поток данных как раз 64 кбит/сек.), более того, часто DSL используют для организации двух независимых телефонных линий (так как всего B-каналов два) на одной паре провода.
В шестидесятые годы инженеры AT&T Bell Labs. создали первую систему оцифровки голоса для телефонных сетей с последующим мультиплексированием двадцати четырех потоков голосовых данных (по 64 кбит/сек. каждый) в один канал передачи данных, работающий на скорости 1,544Мбит/сек. Эта система получила название T1 (ее европейский аналог, в котором объединялись уже тридцать голосовых каналов, получил название E1 и работал на скорости 2,048 Мбит/сек.) и использовала для передачи данных полосу пропускания 1,5 МГц с максимумом на частоте 750 кГц. Максимальная дальность передачи данных составляла около 1 км от центральной станции до первого репитера и около 2 км между последующими репитерами, однако непригодной для подключения частных пользователей эту технологию делала не столько необходимость в репитерах, сколько слишком большой уровень создаваемых помех, который не позволял организовать в одном многожильном кабеле (который, собственно, и идет от каждого жилого дома до ближайшей АТС) более одного канала T1/E1. Более того, взаимные наводки столь высоки, что в общем случае нельзя запустить еще один канал T1/E1 даже в соседнем кабеле, поэтому уделом применения T1/E1 каналов остались сети крупных телефонных и телекоммуникационных компаний.
Для устранения этого недостатка был разработан стандарт HDSL (High data rate DSL), фактически представляющий собой улучшенную технологию передачи T1/E1 по витой паре. HDSL использует полосу частот шириной всего лишь 80...240 кГц (в зависимости от конкретной реализации), позволяет без проблем разместить в одном кабеле несколько линий, а также работает на расстояниях до 4 км без каких-либо репитеров. Наиболее серьезный недостаток HDSL заключается в том, что для достижения скорости 1,544 Мбит/сек. (T1) ему требуется сразу две пары проводов, для скорости же 2048 Мбит/сек. – уже три пары, что опять же усложняло установку HDSL для частных пользователей, обычно имеющих в доме только одну телефонную линию. Тем не менее, это HDSL был первым DSL-стандартом, перешагнувшим порог в 1 Мбит/сек.
Улучшенная версия HDSL, получившая название SDSL (Single line DSL), использовала для передачи все тех же потоков T1/E1 уже только одну телефонную пару, предоставляя при этом скорость до 1,544/2,048 Мбит на расстоянии около 3 км от АТС. Кроме того, нижняя граница полосы сигнала в SDSL лежит выше 4 кГц, поэтому ничто не мешает использовать на одной и той же линии SDSL-модем и обычный телефон.
Отмечу, что все эти технологии – симметричные, то есть предоставляют одинаковые скорости передачи данных в обе стороны. Это прекрасно удовлетворяет нужды телефонных компаний, однако для домашних пользователей, у которых, как правило, объемы принимаемой информации минимум на порядок больше объемов передаваемой, более выгодно использовать несимметричные каналы, отдав большую часть полосы пропускания нисходящему потоку данных, что и было сделано в описанном выше ADSL.
И, наконец, еще один стандарт, созданный уже после ADSL – это VDSL, Very high data rate DSL. Скорость передачи данных "вниз" в VDSL может достигать 51,84 Мбит/сек. – но за это приходится платить уменьшившимся расстоянием устойчивой связи, которое при такой скорости составляет всего лишь около 300 м. Фактически VDSL очень хорош для применения при небольшом – менее 2 км – расстоянии от АТС, но, так как, согласно статистике, среднее расстояние от АТС до абонентов составляет около 5 км, то для широкого применения более "дальнобойный" ADSL подходит лучше.
В заключение же этого раздела я приведу таблицу с основными характеристиками (скоростью и дальностью) современных технологий передачи данных по медной паре:

Введение в технологию ATM

В качестве транспортного протокола в настоящее время при ADSL-подключении используется технология ATM (Asynchronous Transfer Mode, асинхронный режим передачи), завоевавшая в последние годы большую популярность благодаря гибкости, высокой эффективности и при этом – сравнительной простоте реализации.
Изначально технология ATM разрабатывалась как эффективный транспортный механизм для нужд бурно развивающегося рынка телекоммуникаций. Фактически можно выделить два крайних варианта организации сетей передачи данных – сеть с коммутацией каналов (circuit switching) и сеть с коммутацией пакетов (packet switching). Первую технологию отлично иллюстрирует всем знакомая телефонная сеть – на все время разговора Вам предоставляется собственный физический канал передачи данных (то есть голоса) с некоторой пропускной способностью. С одной стороны, это гарантирует Вам, что для Ваших нужд канала хватит при любых условиях – ведь занимаете его Вы и только Вы; но, с другой стороны, когда Вы делаете в разговоре паузы – канал фактически простаивает, поэтому в среднем по времени его пропускная способность используется сравнительно мало. Отмечу, что такой взрывообразный характер трафика характерен для абсолютного большинства сетей передачи мультимедийных данных, да и для многих других тоже.
Во втором варианте – в сети с коммутацией пакетов – нескольким клиентам предоставляется один и тот же канал. На клиентском конце этого канала стоит мультиплексирующее оборудование, принимающее от клиентов пакеты данных, выстраивающее их в очередь и последовательно передающее эту очередь по имеющемуся каналу. Такой подход обеспечивает высокую эффективность использования канала – он практически не простаивает, но, с другой стороны, он не может обеспечить Вам гарантированное время задержки – если перед Вашим пакетом в очереди окажется пакет большого размера от другого клиента, то отправка Вашего пакета задержится на время, необходимое для передачи предыдущего. А так как размер стоящих в очереди пакетов может быть самым различным – то задержка не только велика, но еще и непредсказуема, что приводит к фактической невозможности передавать по каналам с коммутацией пакетов мультимедийные потоки в реальном времени (например, видеоконференции или даже обычный голос).
Технология ATM представляет собой золотую середину между коммутацией каналов и пакетов. В первую очередь, в ATM вводится понятие ячейки – пакета фиксированной длины. В современном стандарте длина ячейки составляет 53 байта, из которых 5 байт приходится на адрес и 48 байт – собственно на передаваемую информацию. Пришедшие от клиента пакеты разбиваются на так называемом адаптационном уровне ATM на ячейки, каждая ячейка снабжается адресной информацией и ставится в очередь. Казалось бы, здесь мы приходим к той же проблеме, что и с коммутацией пакетов – к непредсказуемым задержкам из-за наличия очереди; однако фиксированный размер ячейки, да еще и столь малый, в ATM был выбран не случайно – ячейки, содержащие 48-байтные куски пакетов разных пользователей, в очереди перемешиваются, поэтому задержки столь малы, что в абсолютном большинстве случаев можно ими пренебречь. К тому же в ATM введено понятие качества обслуживания (QoS, Quality of Service) – ячейки могут иметь разный приоритет: например, ячейки, в которых передается видеопоток, будут иметь приоритет выше, чем ячейки, в которых передаются некритичные к времени задержки данные. Технология эта совершенно аналогична реализации многозадачности в современных компьютерах – на самом деле в каждый момент времени выполняется только один процесс, но время переключения между процессами настолько мало, что с точки зрения человека они все выполняются одновременно.
Адаптационных уровней ATM (AAL – ATM Adaptation Level) всего пять, в зависимости от типа службы. Всего же в ATM принято выделять три уровня – физический (это непосредственно среда передачи данных, то есть в нашем случае ADSL; вообще же технология ATM не привязана к какой-либо конкретной среде передачи, поэтому позволяет легко объединять в единое целое разнородные сети), уровень ATM (он занимается непосредственной передачей и приемом ячеек) и описанный выше адаптационный уровень, приспосабливающий протоколы верхнего уровня к ячейкам ATM.
В технологии ATM также широко используется понятие виртуального соединения. В отличие от технологий, оперирующих физическими каналами связи, в ATM привязка к таковым (то есть указание адреса получателя пакета) осуществляется только на этапе установки соединения. После этого между двумя участвующими в обмене данными узлами устанавливается виртуальный канал, однозначно обозначенный двумя числами – идентификаторами виртуального пути (Virtual Path Identifier, VPI) и виртуального канала (Virtual Channel Identifier, VCI). Такое решение позволяет, во-первых, сильно сократить размер заголовка ячейки и, соответственно, время ее обработки, не указывая в нем полный адрес получателя, а, во-вторых, легко строить многосвязные сети (сети, в которых все узлы соединены попарно друг с другом), тем самым избавляясь от транзитных узлов, лишь вносящих дополнительные задержки в передачу данных. Для каждого виртуального пути можно создать несколько виртуальных каналов, что позволяет, например, при работе видеоконференции по одному каналу передавать изображение, по другому – звук, а по третьему – прочую сопутствующую информацию.

Протоколы передачи данных

С точки зрения провайдера использование ATM поверх ADSL на "последней миле" позволяет ему создать однородную сеть – как я отмечал выше, ATM не привязан к какой-либо конкретной физической среде передачи, как и к какой-либо конкретной скорости, так что вся сеть провайдера, включая внешние каналы связи, может быть построена на базе ATM, что заметно облегчает ее эксплуатацию. А вот с точки зрения пользователя не все так просто – абсолютное большинство существующего программного обеспечения не рассчитано на прямую работу с ATM, поэтому использование ATM "в чистом виде" требует серьезного его обновления.
Инкапсуляция протоколов в этом случае крайне проста: приложения работают непосредственно с ATM, ничего лишнего не задействовано (ниже на всех подобных таблицах голубым цветом отмечены "родные" протоколы ATM и физический уровень ADSL, желтым – "вспомогательные" протоколы, обеспечивающие совместимость с ПО, те или иные сервисы и тому подобное, а оранжевым – этапы инкапсуляции этих протоколов в ATM):


Наиболее распространенным способом решения проблемы адаптации ПО является инкапсуляция кадров привычного Ethernet в ячейки ATM (технология Ethernet over ATM, или, сокращенно, EoA, подробно описывается в документах RFC 1483 и более новом RFC 2684). Инкапсуляция выполняется на пятом адаптационном уровне ATM (AAL-5) непосредственно ADSL-модемом – соответственно, на клиентском компьютере требуется лишь наличие обычной сетевой карты, поддерживающего ее ПО, что является стандартом де-факто для любой сколь-нибудь современной системы.
Как видите, схема инкапсуляции заметно усложняется – теперь приложения работают с привычным им TCP/IP, далее пакеты TCP/IP транспортируются посредством Ethernet, а в модеме кадры Ethernet преобразуются в ячейки ATM (и обратно) в соответствии с RFC 2684:


Для обеспечения авторизации пользователей, динамической выдачи IP-адресов и подобных задач поверх сети Ethernet часто запускается еще один протокол – PPPoE (PPP over Ethernet), хорошо знакомый многим пользователям домашних сетей и являющийся аналогом знакомого любому владельцу модема протокола PPP (Point-to-Point Protocol).


В простейшем случае ADSL-модем работает в так называемом мостовом (bridge) режиме, конвертируя ячейки ATM в кадры Ethernet и обратно и передавая эти кадры на компьютер пользователя, где уже устанавливается – если это необходимо – программное обеспечение для реализации PPPoE (в Microsoft Windows XP оно, например, входит в стандартную поставку). Однако есть и модемы, способные самостоятельно запустить PPPoE-сессию и авторизоваться у провайдера.
Технология Ethernet over ATM хороша с точки зрения простоты подключения и стоимости пользовательского оборудования (достаточно модема, умеющего работать в мостовом режиме – а это самая дешевая разновидность модема), однако эффективность транспортировки больших Ethernet-пакетов путем их разбиения на 53-байтные ATM-ячейки сравнительно невысока. В значительной мере это компенсируется высокой (по сравнению с обычными модемами) скоростью ADSL-соединения, однако все же несколько затрудняет организацию видеоконференций (и вообще передачу мультимедийного трафика в реальном времени).
Однако, раз для авторизации пользователей мы традиционно используем протокол PPP, то что мешает инкапсулировать PPP-пакеты в ячейки ATM, тем самым избавившись от промежуточного слоя в виде описанного в первом варианте Ethernet"а? Этот метод получил название PPP over ATM (PPPoA) и подробно описан в документе RFC 2364. С одной стороны, при использовании PPPoA отпадает необходимость двойной инкапсуляции (Ethernet over ATM, а потом PPP over Ethernet), а с другой стороны – сохраняются все преимущества протокола PPP: удобный механизм авторизации пользователей, алгоритмы динамического присвоения IP-адресов и так далее. Разумеется, такой вариант означает, что либо на клиентском компьютере должен быть установлен ADSL-модем, не выполняющий никаких преобразований, и программный клиент PPPoA, либо модем должен уметь самостоятельно поддерживать PPPoA-сессию, передавая полученные данные на клиентский компьютер, например, по Ethernet-сети (отмечу, что здесь не идет никакой речи об инкапсуляции данных).


Также существует еще один метод – передача IP-пакетов по сети ATM (IP over ATM, или, сокращенно, IPoA), описанный в документе RFC 2225 (бывший RFC 1577). В последнее время этот вариант инкапсуляции приобретает все большую популярность.


Плюс к этому для каждого из типов инкапсуляции существует два возможных режима – LLC (Logical Link Control) и VC-Mux (Virtual Channel based Multiplexing). Подробно останавливаться на их отличиях я в данной статье не буду, отмечу лишь, что выбор конкретного режима, как и собственно протокола среди представленных выше, зависит от Вашего ADSL-провайдера.
Таким образом можно заключить, что с теоретической точки зрения выбор конкретных протоколов является компромиссом между сложностью настройки и эффективностью работы с одной стороны и поддержкой имеющегося аппаратного и программного обеспечения – с другой.

Пользовательское оборудование

С точки зрения пользователя все ADSL-модемы можно разделить на четыре группы – внутренние PCI-модемы, внешние модемы с интерфейсом USB, внешние модемы с интерфейсом Ethernet и внешние маршрутизаторы (роутеры) с интерфейсом Ethernet.
Внутренние ADSL-модемы по сравнению с внешними имеют те же достоинства и недостатки, что и модемы классические. С одной стороны, они не занимают место на столе, не требуют отдельного блока питания и заметно уменьшают количество проводов, но, с другой стороны, для установки требуют вскрытия системного блока (что не всегда возможно, если блок находится на гарантии и опечатан), а также не могут работать без драйверов, а потому, как правило, подходят только для пользователей MS Windows (как и в случае с классическими PCI-модемами, для альтернативных систем драйвера существуют далеко не всегда, да и качество их обычно оставляет желать лучшего). Настройка модема осуществляется с помощью специальной утилиты, поставляемой вместе с драйверами.



PCI ADSL-модем Micronet SP3300C


Ровно такую же функциональность, как и внутренние модемы, обеспечивают внешние USB-модемы. Они обладают всего двумя разъемами – USB и разъемом для подключения телефонной линии и, как правило, двумя индикаторами – один светодиод показывает, что модем включен, а другой – что установлено ADSL-соединение. Как и PCI-модемы, они могут работать только в мостовом режиме – даже если для модема заявлена поддержка PPPoE, то на практике это будет означать попросту наличие собственного PPPoE клиента в его драйвере. Опять же, для работы модему требуются драйвера, а для настройки – специальная утилита, так что пользователям систем, отличных от MS Windows, стоит как минимум предварительно выяснить наличие и качество работы драйверов под их ОС, а еще лучше – обратить внимание на модемы с интерфейсом Ethernet.



USB ADSL-модем Billion BIPAC-7000


Более универсальны ADSL-модемы с интерфейсом Ethernet – для работы с ними от операционной системы требуется лишь поддержка протокола TCP/IP и любой сетевой карты с интерфейсом 10BaseT ("витая пара"), к которому и подключается модем. Настройка модема также не требует каких-либо специальных драйверов или утилит – она производится из любого броузера (модем имеет собственный HTTP-сервер и web-интерфейс для конфигурирования), а многие модемы поддерживают и подключение по telnet для сторонников командной строки. Существуют и двустандартные модемы, с обоими интерфейсами – как USB, так и Ethernet (например, Efficient Networks SpeedStream 5100 имеет только интерфейс USB, а SpeedStream 5200 – уже как USB, так и Ethernet).



Ethernet ADSL-модем Zyxel Prestige 645M


Вообще говоря, теоретически такой модем можно подключать даже напрямую к хабу или свитчу, на котором организована домашняя локальная сеть, однако практически в этом, как правило, нет никакого смысла – эти модемы не поддерживают ни трансляции сетевых адресов (NAT, Network Address Translation), ни каких-либо методов авторизации (PPPoE либо PPPoA), они могут лишь выполнять функции конвертера между интерфейсами ATM и Ethernet. Таким образом, основное их преимущество над USB-модемами заключается в наличие интерфейса, поддерживаемого всеми современными ОС и, соответственно, в отсутствии необходимости в каких-либо специфических драйверах.
Как известно, наиболее распространенным способом подключения домашних (да, впрочем, и не только домашних) сетей к интернету в условиях, когда провайдер предоставляет только один IP-адрес, является использование трансляции сетевых адресов (NAT). В этом случае компьютерам внутри сети раздаются так называемые частные IP-адреса (часто их еще называют "серыми") – эти адреса могут использоваться любым желающим, но только в пределах локальной сети, в глобальной же Сети они не имеют какого-либо смысла. Очевидно, что по этой причине компьютеры с частными IP-адресами могут быть доступны только из той локальной сети, в которой они расположены – за ее пределами такая адресация теряет всякий смысл; поэтому для обеспечения доступа в интернет устанавливается сервер, имеющий сразу два адреса – "серый", соответствующий локальной сети, и "белый", доступный снаружи для всех желающих. Если же на сервер из локальной сети поступает пакет, идущий наружу – сервер подменяет в нем "серый" адрес отправителя на собственный "белый" адрес и отправляет дальше, одновременно запоминая, с какого "серого" адреса этот пакет пришел, чтобы, когда из интернета придет ответ на него, переправить этот ответ отправителю исходного пакета. Этот механизм и называется трансляцией сетевых адресов и обеспечивает наиболее прозрачный и наименее зависимый от используемых приложений и операционных систем способ подключения локальных сетей к интернету.
Разновидность ADSL-модемов, имеющих встроенную поддержку NAT, называется ADSL-роутерами. Кроме собственно NAT, большинство ADSL-роутеров поддерживают также PPPoE и PPPoA протоколы (то есть способны при необходимости самостоятельно авторизоваться у провайдера, без установки PPPoE-клиента на пользовательский компьютер), способны работать DHCP-сервером, автоматически раздавая IP-адреса и базовые настройки подключенным к ним компьютерам, а также имеют в своем составе DNS-сервер и файрволл. Иначе говоря, ADSL-роутер способен легко заменить отдельный сервер, полностью обеспечивая функционирование и доступ в интернет небольшой локальной сети. Конечно, для сколь-нибудь серьезной сети возможностей модема не хватит – в нем нет подсчета трафика для каждого из компьютеров сети, фильтрации URL"ов, кэширующего прокси-сервера и многого другого, однако для небольшой домашней сети, состоящей обычно максимум из трех-четырех компьютеров (например, один настольный компьютер и два ноутбука), такой модем является практически идеальным решением.



Ethernet/USB ADSL-роутер U.S. Robotics SureConnect 9003


Как и рассмотренные выше Ethernet ADSL-модемы, роутеры подключаются через интерфейс Ethernet, причем в данном случае возможность подключить их к свитчу или хабу напрямую становится куда более заманчивой. Настройка модемов также осуществляется через web-интерфейс с помощью любого броузера, но многие модели поддерживают и такие протоколы, как telnet и SNMP. Зачастую Ethernet ADSL-модемы оказываются упрощенными версиями ADSL-роутеров, возможности которых ограничены программно – сравните, например, Zyxel Prestige 645M и 645R, или D-Link DSL-300G и DSL-500G.
Весьма привлекательны ADSL-роутеры и для домашних пользователей, имеющих только один компьютер. Во-первых, такой роутер за счет использования NAT позволяет отгородить компьютер от сети, полностью защитив его от червей, подобных MSBlast – дело в том, что к компьютеру, имеющему "серый" IP-адрес, невозможно получить прямой доступ из Интернета, ибо в качестве получателя пакета обязательно должен быть указан адрес "белый", то есть адрес роутера. Способа же указать роутеру извне, что этот пакет должен предназначаться для какого-либо из подключенных к нему локальных компьютеров, в общем случае не существует – поэтому все попытки атак будут приходиться на роутер, которому они не смогут причинить ни малейшего вреда хотя бы потому, что стоящая на нем ОС не имеет ничего общего с Windows. Кроме того, ADSL-роутер является полностью самостоятельным устройством, что весьма удобно, если у Вас на компьютере установлено несколько ОС – например, если Вы поменяли пароль у провайдера, то достаточно сменить его один раз в настройках роутера, а не править настройки PPPoE в каждой из систем. Да и собственно настройка ОС сводится лишь к настройке сетевого интерфейса на автоматическое получение IP-адреса и всей сопутствующей информации от роутера.
И, наконец, высшая категория ADSL-модемов – ADSL-роутеры со встроенными свитчами, точками доступа Wi-Fi, принт-серверами... Такой роутер позволяет организовать небольшую домашнюю сеть без использования какого-либо дополнительного оборудования, что не только весьма удобно, но и обходится дешевле покупки двух или трех отдельных устройств. Та же часть устройства, что отвечает за ADSL и доступ в интернет, ничем не отличается от таковой в обычных ADSL-роутерах.



ADSL-роутер D-Link DSL-604G+ с Wi-Fi и 4-портовым свитчем


Кроме модема, Вам также понадобится сплиттер или микрофильтры – в зависимости от того, как проложен телефонный кабель у Вас в квартире. Если есть возможность сделать отдельный отвод для модема между вводом кабеля в квартиру и первым телефоном, то выгоднее будет приобрести один сплиттер, если же такой возможности нет – потребуются микрофильтры, по одной штуке на каждый из установленных в квартире телефонов.


ADSL-сплиттер

Перспективы развития

Полтора года назад, в начале 2003-го года, ITU (International Telecommunication Union – Международная Комиссия по Электросвязи, МКЭ) закончила разработку двух новых стандартов – ADSL2 (ITU G.992.3 и G.992.4 – эти два варианта отличаются между собой так же, как G.dmt и G.lite – во втором уменьшена как занимаемая частотная полоса, так и, соотвественно, скорость) и ADSL2+ (G.992.5), предоставляющего как увеличение пропускной способности ADSL-соединения, так и новую функциональность.
Стандарт ADSL2 больше нацелен именно на увеличение функциональности, а не скорости – последняя возросла всего лишь на 50 кбит/сек. по сравнению с ADSL при той же длине линии (либо, при той же скорости, появилась возможность удлинить линию на 200 метров). Заметно увеличилась помехоустойчивость связи при наличии узкополосной помехи (например, от радиостанций длинно- и средневолновых диапазонов), появилась возможность изменения накладных расходов протокола – если раньше они составляли 32 кбит/сек. вне зависимости от скорости соединения, то теперь на низких скоростях они могут уменьшаться до 4 кбит/сек., что заметно увеличивает скорости передачи пользовательских данных. Кроме того, ADSL2 позволяет в реальном времени собирать и обрабатывать информацию о состоянии соединения и качестве линии (последнее – даже в том случае, если соединение установить не удалось), что может быть крайне полезно провайдерам и телефонным компаниям при диагностике проблем.
Сильно сократилось энергопотребление ADSL2-трансиверов – если в нынешнем ADSL они всегда работают на полной мощности, то в ADSL2 появилось два дополнительных уровня энергосбережения, названные L2 и L3. ADSL2-трансивер работает на полной мощности (уровень L0) только при передаче непрерывного потока данных (например, если пользователь скачивает большой файл), если же наступает небольшой перерыв в передаче данных (например, когда пользователь просто гуляет по Сети, данные скачиваются весьма небольшими порциями), то модем может автоматически снизить скорость и перейти на уровень L2 с более чем вдвое сниженным энергопотреблением по сравнению с L0; переходы между L2 и L0 происходят практически мгновенно и без какой-либо потери информации, поэтому для пользователя они совершенно незаметны. Если же перерыв в передаче данных затягивается, то модем может уйти в "спячку" на уровень L3, вообще выключив трансиверы – правда, для возвращения из состояния L3 в L0 ему потребуется около трех секунд. Кстати, 3 секунды – это время установки соединения и при первом включении модема, против более чем десяти секунд у нынешних ADSL-модемов.
Пользующиеся обычными аналоговыми модемами достаточно долгое время наверняка помнят появление в протоколе V.32bis функции адаптивного изменения скорости (ASL), позволяющей модему менять скорость в зависимости от качества линии "на лету", то есть без переустановки соединения (ретрейна). Подобная технология появилась и в ADSL2 под названием Seamless Rate Adaptation (SRA) – теперь DSL-модемы могут изменять скорость без разрыва соединения или же каких-либо ошибок, то есть незаметно для пользователя. Например, если мешающая работе модема средневолновая радиостанция прекращает свое вещание в полночь – то вскоре после выключения ее передатчика модем сам поднимет скорость соединения.
Несомненно, помнят старожилы и появившуюся в Windows 98 и Windows NT 4.0 SP5 возможность объединения двух аналоговых модемов в пару – в то время это вызывало многочисленные споры, можно ли считать, что два модема по 56k каждый дадут суммарную скорость 112k, или же в реальности увеличение скорости будет не столь значительным. Впрочем, по причине отсутствия поддержки этого новшества со стороны большинства провайдеров, а также, главное, отсутствия у большинства пользователей второй телефонной линии проблема была скорее общетеоретической, нежели практической... Тем не менее, в ADSL2 появилась аналогичная возможность объединения модемов в пару (и даже больше), причем реализована эта возможность именно на уровне модема, а не операционной системы, что позволяет производителям выпускать многоканальные модемы (то есть однокорпусные устройства, подключающиеся сразу к нескольким линиям), позволяющие удвоить или даже утроить пропускную способность. Вряд ли они заинтересуют частных пользователей, но вполне могут оказаться полезны для организаций, для которых аренда лишней телефонной линии не представляет большой проблемы.
Появилась в ADSL2 и возможность создания виртуальных каналов, позволяющая сделать нечто подобное приоретизации трафика в ATM – например, для передачи голоса или видео можно выделить канал с низкой задержкой, но большим процентом ошибок, а для передачи данных – канал с маленьким процентом ошибок, но и сравнительно большой задержкой. На базе этой технологии предоставляется и так называемая функция Channelized Voice over DSL (CVoDSL), которая позволяет выделить из общего потока данных один или несколько 64-килобитных каналов для передачи голоса, как в обычной телефонной системе. Таким образом, так как пропускная способность ADSL2-модема много выше 64 кбит/сек., можно организовать на одной физической телефонной линии сразу несколько голосовых каналов, причем поддержка их будет осуществляться модемом на физическом уровне DSL, в отличие от технологий Voice over IP (VoIP, эта технология реализуется на уровне IP-сетей, а потому требует специального оборудования – то есть, грубо говоря, компьютера) и даже Voice over ATM (VoATM, эта технология реализуется посредством второго адаптационного уровня AAL2 ATM).
После прочтения предыдущего абзаца сама собой возникает мысль – а так ли нужна теперь совместимость ADSL2 с обычными телефонами, ведь теперь мы можем без проблем организовать сразу несколько цифровых телефонных каналов? И действительно, в ADSL2-модемах предусмотрена возможность отключить режим совместимости, после чего модем расширяет используемый им частотный диапазон в сторону низких частот, за счет чего увеличивает скорость восходящего потока данных на 256 кбит/сек. Разумеется, использовать при этом одновременно с модемом обычный телефон становится невозможно.
С точки же зрения домашнего пользователя наиболее существенные изменения произошли в ADSL2+ – по сравнению с ADSL2, частотная полоса, используемая для нисходящего потока данных, в нем расширена вдвое (в ADSL2 G.992.3 она простирается от 140 кГц до 1,1 МГц, в ADSL2+ – от 140 кГц до 2,2 МГц), что позволило увеличить скорость нисходящего потока до 24 Мбит/сек. Правда, эффективно это работает лишь на линиях длиной порядка полутора километров – при дальнейшем увеличении длины линии разница между ADSL2 и ADSL2+ быстро снижается и уже на линии протяженностью 2,5 км становится равной нулю.
Кроме того, ADSL2+ позволяет снизить взаимные наводки в кабеле между соседними линиями за счет использования диапазона 0,14...1,1 МГц для одной линии и 1,1...2,2 МГц для другой (при этом обе линии получают такую же скорость, как в ADSL2) – впрочем, здесь опять же подразумевается, что вторая линия должна быть не длиннее полутора километров, иначе заставить работать модем на ней только в высокочастотном диапазоне не удастся.
Уже существующие аппаратные решения позволяют как провайдерам, так и пользователям постепенно мигрировать на ADSL2 и ADSL2+ – так, например, в июне этого года компания Texas Instruments представила платформу Uni-DSL (UDSL), поддерживающую сразу пять стандартов – ADSL, ADSL2, ADSL2+, VDSL и пока еще не утвержденный ITU стандарт VDSL2 (его утверждение ожидается в течение 2005-го года, причем, в отличие от нынешнего VDSL, на больших расстояниях он не уступает ADSL по скорости, а идет вровень с ним). Таким образом, переход с ADSL на ADSL2/2+ будет происходить постепенно, без какой-либо перестройки существующей инфраструктуры, по мере постепенной модернизации оборудования провайдерами и пользователями.

Одним из самых массовых и доступных способов подключения к Всемирной паутине сегодня является ADSL-соединение. Аббревиатура ADSL расшифровывается, как «Asymmetric Digital Subscriber Line» - несимметричная цифровая абонентская линия. Несмотря на простоту и практически стопроцентную доступность, мобильное подключение значительно проигрывает по своим возможностям ADSL-подключению: скорость передачи данных ниже, набор услуг меньше, а стоимость подключения значительно выше. Подключение же по технологии ETTH («Ethernet в каждый дом»), GPON и FTTH (с помощью оптико-волоконного кабеля) сегодня доступны пока ещё лишь для жителей многоквартирного сектора в крупных населённых пунктах, так как экономически оправданы при массовых подключениях. Поэтому, сегодня АДСЛ-соединение актуально для большинства пользователей, особенно в небольших населённых пунктах.

Проблемы ADSL-соединения

Несмотря на свою массовую доступность и достаточно приличные технические характеристики:

  1. Практическая скорость доступа: до 24 Мбит/сек;
  2. Протяжённость абонентской линии для удовлетворительной работы: до 7.5 км;
  3. Возможность получения услуги triple play - одновременной передачи голоса, видео и данных.

Эта технология использует в своей работе телефонную абонентскую линию со всеми вытекающими отсюда проблемами.

Рассмотрим типовую схему подключения абонента по технологии ADSL:

Практика эксплуатации данной технологии показывает, что наиболее частыми проблемами, приводящими к тому, что у пользователя устанавливается медленная скорость при адсл-соединении , или вообще, отсутствует выход в интернет, являются:

  1. Неисправность телефонной линии;
  2. Неисправность порта оборудования доступа (DSLAM) на стороне провайдера;
  3. Неверное подключение на стороне пользователя.

Неисправность телефонной линии

Это наиболее частый вид повреждений, возникающий в цепочке «Абонент-Провайдер». К сожалению, телефонная линия связи далека о совершенства. Пока она «добирается» от провайдера интернета к пользователю, она может проходить достаточно много различных участков: магистральный, кабель, кабели распределения, кабели между шкафами и даже так называемые воздушки - провода, идущие от шкафа к абоненту воздушным путём. Каждый из таких участков помимо затухания полезного сигнала, может вносить и различные помехи, приводящие как к общему снижению скорости, так и к тому, что у абонента появляются частые разрывы связи при адсл-соединении.

Конечно, для того, чтобы выполнить измерение физических параметров телефонной линии для получения её качественных характеристик, необходимо наличие специальных приборов и умение ими пользоваться. Но обыкновенный пользователь также может легко оценить её состояние, чтобы понять по какой причине возникают те или иные проблемы с доступом. Для этого необходимо подключиться к ADSL-модему и посмотреть статистику АДСЛ-соединения.

Не только проблемы с линией связи или с оборудованием провайдера приводят к проблемам в работе с интернетом. Задаваясь вопросом – «Как увеличить скорость при адсл-соединении?», пользователь порой забывает, что неверно работающее оборудование или некорректно выполненное подключение на его стороне тоже может стать причиной сбоев и низкой скорости. Поэтому, прежде чем звонить в службу технической поддержки, необходимо проверить - правильно ли выполнено подключение телефонной линии, модема и телефонного аппарата.

Начать, прежде всего, следует со сплиттера – специального устройства, которое предназначено для того, чтобы высокочастотный шум от работы модема не мешал телефонным разговорам. По сути дела, он представляет собой специальный фильтр для разделения рабочих частотных полос модема и телефонного аппарата.


Рассмотрим корректную схему подключения пользовательских устройств:


Следует помнить о том, что нельзя подключать телефонные аппараты и какие-либо другие телефонные устройства до сплиттера! Все телефоны должны быть строго подключены к гнезду PHONE! В противном случае, соединение будет неустойчивым, и, как правило, с низкой скоростью. Разрывы связи при адсл-соединении будут в этом случае практически постоянными.

Подключение adsl-модема без сплиттера приведёт к появлению шума во время телефонного разговора и как в первом случае, к низкому качеству соединения. Однако, если вы не используете телефонный аппарат, то модем можно подключать к телефонной линии и без этого устройства.

Следует избегать чрезмерно длинных телефонных удлинителей. Если уж без него никак не удаётся обойтись, необходимо выбирать такие, в которых используется не четыре, а два проводника. Это уменьшит уровень помех и повысит качество соединения.

К сожалению, adsl-модем также не застрахован от повреждений. Причём есть повреждения явные, то есть, когда он просто не работает или работает некорректно, а есть скрытые, связанные с повреждением его линейной части. Особенно часто такие неисправности довольно часто возникают после грозы. При этом сам модем рабочий и даже может устанавливать соединение с оборудованием провайдера, но оно нестабильно, или соединение происходит на низкой скорости. Первое впечатление, которое возникает – неисправность телефонной линии, так как «симптомы» очень похожи. В этом случае, следует снять показания основных характеристик соединения из его меню в разделе «Статистика», и проверить его на стенде у провайдера, попросив снять те же самые данные. Если показания будут схожими – скорее всего, линейная часть модема «подгорела» и требует ремонта.

  1. Если скорость доступа в интернет периодически снижается, начните проверку с исследования стабильности установленного соединения – «линка». (Английский вариант слова – Link). Проследите за индикатором с таким же названием. На некоторых моделях он называется ADSL. Во время работы, если адсл-соединение стабильно и установлено - он должен просто гореть. Если он периодически мигает – соединение с провайдером нестабильно, требуется проверка линии связи.
  2. Следите за исходящей (upstream) скоростью в линии. Практика показывает, что чем она ниже – тем ниже качество соединения. В идеале, она должна быть равна или близка к 1 Мбит/сек (только если не ограничена специально тарифом).
  3. При постоянных разрывах связи, можно попробовать отключить сплиттер и телефон, включив на время модем, напрямую в линию. Этим самым исключается возможное влияние других устройств на соединение. Если в этом случае все работает стабильно, то можно, включая устройства по очереди, выяснить, какое из них оказывает влияние.
  4. Всегда проверяйте качество контакта в разъёмах. Современный телефонный разъем RJ11 – не очень качественное изделие, его контакты часто окисляются. Извлеките и вставьте его на место два-три раза.

Технология ADSL

В последние годы рост объемов передачи информации привел к тому, что наблюдается дефицит пропускной способности каналов доступа к существующим сетям. Если на корпоративных уровнях эта проблема частично решается (арендой высокоскоростных каналов передачи), то в квартирном секторе, и в секторе малого бизнеса эти проблемы существуют.

На сегодняшний день основным способом взаимодействия оконечных пользователей с частными сетями и сетями общего пользования является доступ с использованием телефонной линии и модемов, устройств, обеспечивающих передачу цифровой информации по абонентским аналоговым телефонным линиям. Скорость такой связи невелика, максимальная скорость может достигать 56 Кбит/с. Этого пока хватает для доступа в Интернет, однако насыщение страниц графикой и видео, большие объемы электронной почты и документов в ближайшее время снова поставит вопрос о путях дальнейшего увеличения пропускной способности.

Наиболее перспективной в настоящее время является технология ADSL (Asymmetric Digital Subscriber Line). Это новая модемная технология, превращающая стандартные абонентские телефонные аналоговые линии в линии высокоскоростного доступа. Технология ADSL позволяет передавать информацию к абоненту со скоростью до 6 Мбит/с. В обратном направлении используется скорость до 640 Кбит/с. Это связанно с тем, что все современный спектр сетевых услуг предполагает весьма незначительную скорость передачи от абонента. Например, для получения видеофоильмов в формате MPEG-1 необходима полоса пропускания 1,5 Мбит/с. Для служебной информации передаваемой от абонента, вполне достаточно 64-128 Кбит/с (Рис. 1).

Принципы организации услуги ADSL

Услуга ADSL (Рис. 1) организуется с помощью модема ADSL, и стойки модемов ADSL, называемой DSL Access Module. Практически все DSLAM оснащаются портом Ethernet 10Base-T. Это позволяет использовать на узлах доступа обычные концентраторы, коммутаторы и маршрутизаторы.

Ряд производителей начали снабжать DSLAM интерфейсами АТМ, что позволяет напрямую подключать их к ATM-коммутаторам территориально-распределенных сетей. Также ряд производителей создают пользовательские модемы, которые представляют собой ADSL модем, но для программного обеспечения являются адаптерами ATM.

На участке между ADSL модемом и DSLAM функционируют три потока: высокоскоростной поток к абоненту, двунаправленный служебный и речевой канал в стандартном диапазоне частот канала ТЧ (0,3-3,4 Кгц). Частотные разделители (POTS Splitter ) выделяют телефонный поток, и направляют его к обычному телефонному аппарату. Такая схема позволяет разговаривать по телефону одновременно с передачей информации и пользоваться телефонной связью в случае неисправности оборудования ADSL. Конструктивно телефонный разделитель представляет собой частотный фильтр, который может быть как интегрирован в модем ADSL, так и быть самостоятельным устройством.

Согласно теореме Шеннона , невозможно с помощью модемов достичь скоростей выше 33,6 Кбит/с. В ADSL технологии цифровая информация передается вне диапазона частот стандартного канала ТЧ. Это приведет к тому, что фильтры, установленные на телефонной станции отсекут частоту выше 4 кГц, поэтому необходимо на каждой телефонной станции установить оборудование доступа к территориально-распределенным сетям (коммутатор или маршрутизатор).

Передача к абоненту осуществляется на скоростях от 1,5 до 6,1 Мбит/с, скорость служебного канала составляет от 15 до 640 Кбит/с. Каждый канал может быть разделен на несколько логических низкоскоростных каналов.

Скорости, предоставляемые модемами ADSL кратны скоростям цифровых каналов T1, E1. В минимальной конфигурации передача ведется на скорости 1,5 или 2,0 Мбит/с. В принципе, сегодня существуют устройства, передающие данные со скоростью до 8 Мбит/с, однако в стандартах такая скорость не определена.

Скорость модемов ADSL в зависимости от числа каналов

Базовая скорость Количество каналов Скорость
1,536 Мбит/с 1 1,536 Мбит/с
1,536 Мбит/с 2 3,072 Мбит/с
1,536 Мбит/с 3 4,608 Мбит/с
1,536 Мбит/с 4 6,144 Мбит/с
2,048 Мбит/с 1 2,048 Мбит/с
2,048 Мбит/с 2 4,096 Мбит/с
2,048 Мбит/с 3 6,144 Мбит/с

Максимально возможная скорость линии зависит от ряда факторов, включающих длину линии и толщину телефонного кабеля. Характеристики линии ухудшаются с увеличением его длины и уменьшении сечения провода. В таблице показаны несколько вариантов зависимости скорости от параметров линии.

ADSL-модем представляет собой устройство, построенное на базе цифрового сигнального процессора (ЦСП или DSP), аналогичное применяемому в обычных модемах (Рис. 2). В общем случае, вся пропускная способность линии делится на два участка. Первый участок предназначен для передачи голоса, и находится в диапазоне 0,3-3,4 КГц. Диапазон сигнала для передачи данных лежит в пределах от 4 Кгц до 1 Мгц. Физические параметры большинства линий не позволяют передавать данные с частотой свыше 1 МГц. К сожалению не все существующие телефонные линии (особенно большой протяженности), имеют даже такие характеристики, поэтому приходится уменьшать полосу пропускания, что влечет за собой уменьшение скорости передачи.

Для создания этих потоков используются два метода: метод с частотным разделением каналов и метод эхо компенсации.


Рис. 3 Схемы разделения потоков в полосе пропускания частот телефонной линии

Метод с частотным разделением состоит в том, что каждому из потоков выделяется своя полоса пропускания частот. Высокоскоростной поток может разделяться на один или более низкоскоростных потоков. Передача этих потоков осуществляется методом "" (DMT).

Метод эхо компенсации состоит в том, что диапазоны высокоскоростного и служебного потоков накладываются друг на друга. Разделение потоков осуществляется с помощью дифференциальной системы, встроенной в модем. Этот способ используется в работе современных модемов V.32 и V.34. Высокоскоростной поток может разделяться на один или более низкоскоростных потоков Передача этих потоков осуществляется методом "дискретной многотональной модуляции " (DMT).

При передаче множества потоков происходит разделение каждого из них на блоки. Каждый блок снабжается кодом исправления ошибок (ECC).

Смежные технологии

Существует ряд смежных технологий, одни из которых предназначены для оконечных пользователей, другие для транзитной передачи высокоскоростных потоков. Принцип работы их аналогичен ADSL. Общее название таких технологий xDSL.

High Data-Rate Digital Subscriber Line (HDSL)

HDSL является технологией, обеспечивающей передачу на скорости 1,536 или 2,048 Мбит/с в обоих направлениях. Протяженность линии может достигать 3,7 км. Ориентирована в качестве более дешевой альтернативы выделенным каналам E1, T1. Требует четырехпроводной абонентской линии.

Single-Line Digital Subscriber Line (SDSL)

Аналогичен HDSL, отличается тем, что для организации линии достаточно двухпроводной абонентской линии. Протяженность линии может достигать 3 км.

Very High Data-Rate Digital Subscriber Line (VDSL)

Аналогична HDSL, скорость до 56 Мбит/с. Расстояние до 1,5 км. Технология весьма дорогая, и не находит широкого применения.

Rate Adaptive Digital Subscriber Line (RADSL)

Технология ADSL обладает одним существенным недостатком. Она не позволяет изменять скорость в зависимости от качества линии. В таких модемах выбор скорости, кратной 1,5 или 2 Мбит/с, производится с помощью программного обеспечения. Оборудование, построенное на базе технологии RADSL позволяет автоматически снижать скорость в зависимости от качества линии.

Universal ADSL (UADSL)

Технология ADSL обладает рядом мелких недостатков, препятствующих широкому внедрению технологии на сетях абонентского доступа. Это сложность установки устройств ADSL; они требуют серьезной настройки на конкретную абонентскую линию (как правило, с участием технического сотрудника компании — оператора сети), имеют относительно большую стоимость.

Не так давно появились сообщения о создании новой версии технологии ADSL, которая призвана устранить указанные недостатки. Ее называют Universal ADSL (UADSL), или DSL Lite. Правда, при использовании этой технологии данные передаются на более низких скоростях, чем в ADSL (при длине абонентской линии до 3,5 км скорость составляет 1,5 Мбит/с в направлении к абоненту и 384 кбит/с — в обратном направлении; при длине абонентской линии до 5,5 км обеспечиваются 640 кбит/с по направлению к абоненту и 196 кбит/с — в противоположном). Однако эти устройства легче устанавливать; кроме того, в их составе имеется частотный разделитель, поэтому его не приходится устанавливать отдельно. По существу, достаточно просто подключить UADSL-модем к телефонной розетке, так же как и обычный модем.

Стоимость таких устройств не превышает стоимости обычного модема, поэтому стоит ожидать, что именно эта технология найдет широкое применение в аппаратуре доступа оконечных пользователей.

Стандарты

Американский Национальный Институт Стандартов (ANSI), рабочая группа T1E1.4 недавно одобрила стандарт на ADSL со скоростью передачи до 6,1 Мбит/с (ANSI Стандарт T1.413). ETSI дополнила этот стандарт требованиями для Европы. T1.413 определяет единый терминальный интерфейс со стороны оператора. Вторая версия этого стандарта, разрабатываемая группой T1E1.4, расширила стандарт, в котором определила: мультиплексированный интерфейс со стороны оператора; протоколы конфигурации и управление сетью.

Немного цифр

Расстояния для short range модемов зависят от диаметра медной пары:

1. Telindus Crocus HDSL 2048Kb/s :

Wire diameter (mm) 2-pair version (km) 3-pair version (km)
0.4 3.6 4.0
0.5 5.0 5.5
0.6 7.1 7.8
0.8 8.9 9.9
1.0 12.5 13.9

2. Telindus Crocus SDSL:

Wire diameter 384 Kbit/s 768 Kbit/s 1152 Kbit/s
0.4 mm 5.0 Km 4.3 Km 3.6 Km
0.5 mm 6.9 Km 6.0 Km 5.0 Km
0.6 mm 9.8 Km 8.4 Km 7.1 Km
0.8 mm 12.4 Km 10.6 Km 8.9 Km
1.0 mm 17.3 Km 14.9 Km 12.5 Km
1.2 mm 19.3 Km 16.6 Km 13.9 Km

3. Telindus Crocus HS (144Kb/s):

Wire diameter (mm) distance (km)
0.4 6.9
0.5 9.5
0.6 13.5
0.8 17.5
1.0 26.0

Дополнение1

Статья написана хорошо, все верно, однако есть некоторые комментарии относительно внедрения ADSL в реальной жизни. К сожалению, на обычных российских линиях связи ADSL может применяться лишь в порядке эксперимента, о промышленной эксплуатации пока речи не идет. Для ADSL линии требуется ВИТАЯ пара (а не лапша) причем экранированная, а если это многопарный кабель, то и с соблюдением направления и шага повива.

Можно возразить (С.Ж.), заметив, что лапша идет только на участке от кросса в доме до квартиры, ее замена на витую пару не представляет как технических, так и экономических сложностей. На участке кросс-телефонная станция используются многопарные кабели, где каждая пара является витой.

Вроде бы убедительно НО пробовали-ли вы разбирать телефонный кабель? Снимите метр изоляции с импортного кабеля и с отечественного. Импортный-распустится на витые пары которые не развалятся если даже их потеребить, а отечественный почти сразу превращается в веник и требуется изрядное мастерство чтобы без дополнительных приспособлений разделать его. Замена лапши тоже вроде не выглядит страшной, но ведь лапшой тут не обойдется, потребуется замена КРТ (коробка распределительная телефонная) тем более если она пластмассовая (вспомните как разводятся ЛВС) и стоит она в каждом подьезде и часто не по одной. Направление повива в отечественных многопарных кабелях не соблюдается (разберите для примера наш 50-ти парный кабель или 100 парный), потому, как никто не думал что такие кабели будут использоваться для передачи широкоспектральных высокочастотных сигналов, соответственно и о защите от переходных помех тоже никто не задумывался. У капиталистов, возможно, это благо тоже возникло случайно, потому как там конкуренция и чтобы продукцию покупали, она должна соответствовать даже не обязательным, а рекомендованным всякими комисиями параметрам (потому как эти комиссии не даром свой хлеб едят) и на территории одного района (или даже квартала) могут работать два или более провайдера телефонных услуг. Вооьщем, как всегда благодаря конкуренции получаются качественные товары и услуги.

Для Е1 используется витая пара аж с двумя экранами изолированными друг от друга по длинне кабеля и с регламентированым количеством кабельных пролетов, иначе ни о каком километраже и о стабильной связи говорить не приходится.

Это верно, но на мой взгляд (С.Ж.) технология DSL скорее найдет свое применнеие не в промышленности, а именно в квартирном секторе.

Ага, вот, что могу добавить (И.Ш.), пару лет назад эту технологию предлагали РОСТЕЛЕКОМу для реконструкции коротких магистралей, а магистральный кабель это вам не домашняя разводка по такому кабелю можно и 64 Мбита пропустить и строилась эта модернизация по схеме станция-кабель-станция. Ну так РОСТЕЛЕКОМ не согласился использовать эти технологии, потому как дорого. Сомневаюсь, что сейчас оборудование подешевело настолько, что стоит как эзернетовский хаб? А если я не прав, значит кто-то хочет сильно погреть руки на модернизации кабельных линий и внедрении новой техники.

Ну а теперь представим, что в телефонный кабель запущено 2-6 МБит, а он (кабель) соответствующими параметрами не обладает (часто межпроводная изоляция занижена -- ну подмочили бедолагу, слышали наверно трески и космические переговоры в трубке), в результате наружу полезут наводки. Я думаю, что эти наводки будут следствием комбинаторных частот, причем очень широкого спектра, которые создадут такие помехи телевизионным приемникам, что может начаться настоящая война. Так что на практике пока не все гладко, к сожалению.

Именно поэтому, лично я считаю (С.Ж.), что гораздо более актуальным является внедрение UADSL с маленькими скоростями (до 640 Кбит/с). Все указаные эффекты в этой технологии будут выражены в гораздо меньшей степени.

Я думаю (И.Ш.), что все равно, цена такого внедрения будет на данном этапе слишком высока, чтобы в серьез думать о нем. Так что, тут больше проблем, чем кажется на первый взгляд и в любом случае требуется более серьезный подход.

А вот моя информация (С.Ж.): провайдеры, в частности Роснет, не разделяют Ваших взглядов на проблемы технического плана и могут предоставить оборудование ADSL. Установка модема, настройка, подключение, обходится примерно в $2,500. При этом обеспечивается скорость до 640 Кбит/с. Месячная абонентская плата составляет около $300.

Модемы ADSL сейчас стоят в районе $800-1500. Модемы UADSL должны стоить примерно $250-500, что более приемлимо.

Как только на каждом телефонном узле будет установлено оборудования доступа к сетям передачи данных, подобный вид услуг значительно подешевеет, а внедрение такого оборудования доступа напрямую связано с внедрением ATM.

Дополнение2

В статье Станислав Журавлев хорошо излагает теоретический аспект, но не затрагивает специфику применения этой технологии в России. В первом дополнеии ликвидированы некоторые пробелы, но есть несколько неточностей:

Во-первых, хDSL технологии были разработаны исследовательским подразделением корпорации Bell именно для применения на существующей инфраструктуре медных проводов, которая даже в USA отличается преклонным возрастом и построена на обычной медной телефонной паре, а не на экранированной витой.

Во-вторых "лапша" действительно не годится для хDSL линий, но "лапша" используется на участке от распределительной телефонной коробки до абонентской розетки, что составляет обычно порядка 5-15 метров. В действительности есть два ограничения, которые при заданном сопротивлении линии (обычно 1-1.5 кОм) не позволяют использовать хDSL устройства, это пупинизация и сборка из проводов различного сечения. Пупинизация линии — это введение индуктивной составляющей в линию с целью уменьшения затухания сигнала, но в России такие линии почти не используются. Вторая проблема встречается довольно часто, но если станционная часть оборудования находится на ближайшей к вам АТС то вероятность возникновения подобной проблемы мала, в любом случае эту проблему можно решить с местным телефонным узлом. Однако, если нужен прямой канал, к примеру для соединения двух локальных сетей, то и это не проблема. В Москве существует достаточно большое количество прямых каналов работающих по меди на расстояние 5-7 км и сопротивлением 1-1.5 кОм.

Широкое распространение хDSL технологий в России сдерживается, прежде всего, не недостаточным количеством телефонных пар с приемлемыми параметрами (пока количество установленных линий по Москве исчисляется десятками или сотнями), а ценой оборудования, $2000-3000 за комплект из станционной и абонентской частей, ценой на подключение и стоимостью выделенного канала (посмотрите ради любопытства у любого из провайдеров сколько стоит синхронный канал 64К канал цены вас неприятно поразят). Скорость уже установленных линий обычно колеблется в пределах 64-512К. хDSL линии работающих на скорости больше 2МБит по меди я вообще не встречал и думаю в ближайшее время их появление маловероятно. Объясняется это тем, что стоимость 2МБит потока велика настолько, что позволить его себе могут либо очень крупные коммерческие фирмы, либо телекоммуникационные компании, сами занимающиеся провайдингом, а для них очень важен такой критерий как вероятность ошибки на канале. Наименьшую же вероятность ошибки обеспечивает оптическое волокно, стабильность работы которого будет в любом случае на несколько порядков выше чем хDSL линии.

Наиболее радужные перспективы мне кажется имеет оборудование рассчитанное на скорости 64-512К, особенно созданное в соответствии со стандартом UDSL, который должен быть принят до конца этого года. Производители обещают цену на абонентский UDSL модем не более $300-400. Если предоставлением xDSL услуг заинтересуются крупные телекоммуникационные компании (идеальный случай МГТС:--)), которые смогут разместить за свой счет станционные комплекты оборудования на большом количестве телефонных узлов, нас ожидает в ближайшее время резкий рост количества используемых хDSL линий.

В последние годы развитие рынка телекоммуникационных услуг, привело к дефициту пропускной ёмкости каналов доступа к существующим сетям провайдеров. Если на корпоративном уровне эта проблема снимается, предоставлением в аренду высокоскоростных каналов передачи данных, то какую альтернативу можно предложить абонентам на существующих линиях, вместо коммутируемого соединения, в квартирном секторе и секторе малого бизнеса?

На сегодняшний день основным способом взаимодействия оконечных пользователей с частными сетями и сетями общего пользования является доступ с использованием телефонной линии и модемов, устройств, обеспечивающих передачу цифровой информации по абонентским аналоговым телефонным линиям - так называемое Dialup соединение. Скорость такой связи невелика, максимальная скорость может достигать 56 Кбит/с. Этого пока хватает для доступа в Интернет, однако насыщение страниц графикой и видео, большие объемы электронной почты и документов, возможность обмена пользователями мультимедийной информацией, поставило задачу об увеличении пропускной способности существующей абонентской линии. Решением данного вопроса, стало развитие ADSL технологии.

Технология ADSL (Asymmetric Digital Subscriber Line - асимметричная цифровая абонентская линия), является наиболее перспективной в настоящее время, на данном этапе развития абонентских линий. Она входит в общую группу технологий высокоскоростной передачи данных, объединённых общим термином DSL (Digital Subscriber Line- цифровая абонентская линия).

Основное преимущество данной технологии в том, что нет необходимости прокладывать кабель до абонента. Используются уже проложенные телефонные кабели, на которые устанавливаются сплиттеры для разделения сигнала на "телефонный" и "модемный". Для приёма и передачи данных используются разные каналы: приёмный обладает существенно большей пропускной способностью.

Общее название технологий DSL возникло в 1989году, когда впервые появилась идея использовать аналогово-цифровое преобразование на абонентском конце линии, что позволило бы усовершенствовать технологию передачи данных по витой паре медных телефонных проводов. Технология ADSL была разработана для обеспечения высокоскоростного (можно даже сказать мегабитного) доступа кинтерактивным видеослужбам (видео позапросу, видеоигры и т.п.) и не менее быстрой передачи данных (доступ в Интернет, удаленный доступ к ЛВС и другим сетям). На сегодняшний день технологии DSL, представлены:

  • ADSL (Asymmetric Digital Subscriber Line - асимметричная цифровая абонентская линия)

Данная технология является асимметричной, то есть скорость передачи данных от сети к пользователю значительно выше, чем скорость передачи данных от пользователя в сеть. Такая асимметрия, в сочетании с состоянием "постоянно установленного соединения" (когда исключается необходимость каждый раз набирать телефонный номер и ждать установки соединения), делает технологию ADSL идеальной для организации доступа в сеть Интернет, доступа клокальным сетям (ЛВС) и т.п. При организации таких соединений пользователи обычно получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость "нисходящего" потока данных в пределах от 1,5Мбит/с до 8Мбит/с искорость "восходящего" потока данных от 640Кбит/с до 1,5Мбит/с. ADSL позволяет передавать данные со скоростью 1,54 Мбит/с на расстояние до 5,5км по одной витой паре проводов. Скорость передачи порядка 6-8Мбит/с может быть достигнута при передаче данных на расстояние не более 3,5км по проводам диаметром 0,5мм.

  • R-ADSL (Rate-Adaptive Digital Subscriber Line-цифровая абонентская линия с адаптацией скорости соединения)

Технология R-ADSL обеспечивает такую же скорость передачи данных, что и технология ADSL, но при этом позволяет адаптировать скорость передачи к протяженности и состоянию используемой витой пары проводов. При использовании технологии R-ADSL соединение на разных телефонных линиях будет иметь разную скорость передачи данных. Скорость передачи данных может выбираться при синхронизации линии, во время соединения или посигналу, поступающему от станции

  • G . Lite (ADSL.Lite)

Представляет собой более дешёвый и простой в установке вариант технологии ADSL, обеспечивающий скорость "нисходящего" потока данных до 1,5Мбит/с и скорость "восходящего" потока данных до 512Кбит/с или по 256Кбит/с в обоих направлениях.

  • HDSL (High Bit-Rate Digital Subscriber Line-высокоскоростная цифровая абонентская линия)

Технология HDSL предусматривает организацию симметричной линии передачи данных, то есть скорости передачи данных от пользователя в сеть и из сети к пользователю равны. Благодаря скорости передачи (1,544Мбит/с по двум парам проводов и 2,048 Мбит/с по трем парам проводов) телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1. (Линии Т1 используются в Северной Америке и обеспечивают скорость передачи данных 1,544Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2,048Мбит/с.) Хотя расстояние, на которое система HDSL передает данные (а это порядка 3,5- 4,5км), меньше, чем при использовании технологии ADSL, для недорогого, но эффективного, увеличения длины линии HDSL телефонные компании могут установить специальные повторители. Использование для организации линии HDSL двух или трех витых пар телефонных проводов делает эту систему идеальным решением для соединения удалённых узлов АТС, серверов Интернет, локальных сетей и т.п.

  • SDSL (Single Line Digital Subscriber Line-однолинейная цифровая абонентская линия)

Также как и технология HDSL, технология SDSL обеспечивает симметричную передачу данных со скоростями, соответствующими скоростям линии Т1/Е1, но при этом технология SDSL имеет два важных отличия. Во-первых, используется только одна витая пара проводов, а во-вторых, максимальное расстояние передачи ограничено 3км. В пределах этого расстояния технология SDSL обеспечивает, например, работу системы организации видеоконференций, когда требуется поддерживать одинаковые потоки передачи данных в оба направления.

  • SHDSL (Simmetric High Speed Digital Subscriber Line - симметричная высокоскоростная цифровая абонентская линия

Наиболее современный тип технологии DSL, нацелен прежде всего на обеспечение гарантированного качества обслуживания, то есть при заданной скорости и дальности передачи данных обеспечить уровень ошибок не хуже 10 -7 даже в самых неблагоприятных шумовых условиях.

Этот стандарт является развитием HDSL, поскольку он позволяет передавать цифровой поток по одной паре. Технология SHDSL имеет несколько важных преимуществ по сравнению с HDSL. Прежде всего, это лучшие характеристики (в отношении предельной длины линии и запаса по шумам) за счет применения более эффективного кода, механизма предварительного кодирования, более совершенных методов коррекции и улучшенных параметров интерфейса. Эта технология спектрально совместима и с другими технологиями DSL. Поскольку новая система использует более эффективный линейный код по сравнению с HDSL, то при любой скорости сигнал SHDSL занимает более узкую полосу частот, чем соответствующий той же скорости сигнал HDSL. Поэтому, создаваемые системой SHDSL, помехи для других систем DSL имеют меньшую мощность по сравнению с помехами от HDSL. Спектральная плотность сигнала SHDSL имеет такую форму, что он оказывается спектрально совместим с сигналами ADSL. В результате этого, по сравнению с однопарным вариантом HDSL, SHDSL позволяет повысить на 35-45% скорость передачи при той же дальности или увеличить дальность на 15-20% при той же скорости.

  • IDSL (ISDN Digital Subscriber Line - цифровая абонентская линия IDSN)

Технология IDSL обеспечивает полностью дуплексную передачу данных на скорости до 144 Кбит/с. В отличие от ADSL возможности IDSL ограничиваются только передачей данных. Несмотря на то, что IDSL также как и ISDN использует модуляцию 2B1Q, между ними имеется ряд отличий. В отличие от ISDN линия IDSL является некоммутируемой линией, не приводящей к увеличению нагрузки на коммутационное оборудование провайдера. Также линия IDSL является "постоянно включенной" (как и любая линия, организованная с использованием технологии DSL), в то время как ISDN требует установки соединения.

  • VDSL (Very High Bit-Rate Digital Subscriber Line - сверхвысокоскоростная цифровая абонентская линия)

Технология VDSL является наиболее "быстрой" технологией xDSL. Она обеспечивает скорость передачи данных "нисходящего" потока в пределах от13 до 52 Мбит/с, а скорость передачи данных "восходящего" потока в пределах от 1,5 до 2,3 Мбит/с, при чем по одной витой паре телефонных проводов. В симметричном режиме поддерживаются скорости до 26Мбит/с. Технология VDSL может рассматриваться как экономически эффективная альтернатива прокладыванию волоконно-оптического кабеля до конечного пользователя. Однако, максимальное расстояние передачи данных для этой технологии составляет от 300метров до 1300 метров. То есть, либо длина абонентской линии не должна превышать данного значения, либо оптико-волоконный кабель должен быть подведен поближе к пользователю (например, заведен в здание, в котором находится много потенциальных пользователей). Технология VDSL может использоваться с теми же целями, что и ADSL; кроме того, она может использоваться для передачи сигналов телевидения высокой четкости (HDTV), видео по запросу и т.п. Технология не стандартизована, у разных производителей оборудования разные значения скоростей.

Так что же такое ADSL? Прежде всего, ADSL является технологией, позволяющей превратить витую пару телефонных проводов в тракт высокоскоростной передачи данных. Линия ADSL соединяет оборудование доступа на стороне провайдера DSLAM (DSL Access Multiplexor) и модем клиента, которые подключены к каждому концу витой пары телефонного кабеля (смотрите рисунок 1). При этом организуются три информационных канала - "нисходящий поток передачи данных, "восходящий" поток передачи данных и канал обычной телефонной связи (POTS) (смотрите рисунок 2). Канал телефонной связи выделяется с помощью частотного разделителя фильтра - splitter, и направляет его к обычному телефонному аппарату. Такая схема позволяет разговаривать по телефону одновременно с передачей информации и пользоваться телефонной связью в случае неисправности оборудования ADSL. Конструктивно телефонный разделитель представляет собой частотный фильтр, который может быть, как интегрирован в модем ADSL, так и быть самостоятельным устройством.

Рис. 1


Рис. 2

ADSL является асимметричной технологией- скорость "нисходящего" потока данных (т.е. тех данных, которые передаются в сторону конечного пользователя) выше, чем скорость "восходящего" потока данных (в свою очередь передаваемого от пользователя в сторону сети). Сразу же следует сказать, что не следует искать здесь причину для беспокойства. Скорость передачи данных от пользователя (более "медленное" направление передачи данных) все равно значительно выше, чем при использовании аналогового модема. Такая ассиметрия вводится искусственно, современный спектр сетевых услуг предполагает весьма незначительную скорость передачи от абонента. Например, для получения видеофильмов в формате MPEG-1 необходима полоса пропускания 1,5 Мбит/с. Для служебной информации передаваемой от абонента (обмен командами, служебный трафик) вполне достаточно 64-128 Кбит/с. По статистике, входящий трафик в несколько раз, а иногда и на порядок, превышает исходящий. Такое соотношение скоростей обуславливает оптимальную производительность.

Для сжатия большого объема информации, передаваемой по витой паре телефонных проводов, в технологии ADSL используется цифровая обработка сигнала и специально созданные алгоритмы, усовершенствованные аналоговые фильтры и аналого-цифровые преобразователи. Телефонные линии большой протяженности могут ослабить передаваемый высокочастотный сигнал (например, на частоте 1МГц, что является обычной скоростью передачи для ADSL) на величину до 90дБ. Это заставляет аналоговые системы модема ADSL работать с достаточно большой нагрузкой, позволяющей иметь большой динамический диапазон и низкий уровень шумов. На первый взгляд система ADSL достаточно проста - создаются каналы высокоскоростной передачи данных по обычному телефонному кабелю. Но, если детально разобраться в работе ADSL, можно понять, что данная система относится к достижениям современной технологии.

Технология ADSL использует метод разделения полосы пропускания медной телефонной линии на несколько частотных полос (так же называемых несущими). Это позволяет одновременно передавать несколько сигналов по одной линии. Точно такой же принцип лежит в основе кабельного телевидения, когда каждый пользователь имеет специальный преобразователь, декодирующий сигнал и позволяющий видеть на экране телевизора футбольный матч или увлекательный фильм. При использовании ADSL разные несущие одновременно переносят различные части передаваемых данных. Этот процесс известен как частотное уплотнение линии связи (Frequency Division Multiplexing - FDM) (смотрите рисунок 3).



Рис. 3

При FDM один диапазон выделяется для передачи "восходящего" потока данных, а другой диапазон для "нисходящего" потока данных. Информационный "нисходящий" поток разбивается на несколько информационных каналов - DMT (Discrete Multi-Tone), каждый из которых передается на своей несущей частоте с использованием QAM. QAM это метод модуляции - Quadrature Amplitude Modulation, называемый квадратурно-амплитудной модуляцией (КАМ). Он используется для передачи цифровых сигналов и предусматривает дискретное изменение состояния сегмента несущей одновременно по фазе и амплитуде. Обычно DMT разбивает полосу от 4 кГц до 1,1 Мгц на 256 каналов, каждый шириной по 4 кГц. Данный метод по определению решает проблему разделения полосы между голосом и данными (голосовую часть он просто не использует), но более сложен в реализации, чем CAP (Carrierless Amplitude and Phase Modulation) - амплитудно-фазовой модуляции без передачи несущей. DMT утвержден в стандарте ANSI T1.413, а также рекомендован как основа спецификации Universal ADSL. Кроме этого может применяться технология эхокомпенсации (Echo Cancellation), при использовании которой диапазоны "восходящего" и "нисходящего" потоков перекрываются (смотрите рисунок 3) и разделяются средствами местной эхокомпенсации.

Именно таким образом ADSL может обеспечить, например, одновременную высокоскоростную передачу данных, передачу видеосигнала и передачу факса. И все это без прерывания обычной телефонной связи, для которой используется таже телефонная линия. Технология предусматривает резервирование определенной полосы частот для обычной телефонной связи (или POTS- Plain Old Telephone Service). Удивительно, как быстро телефонная связь превратилась не только в "простую" (Plain), но и в "старую" (Old); получилось что-то вроде "старой доброй телефонной связи". Однако, следует отдать должное разработчикам новых технологий, которые все же оставили телефонным абонентам узенькую полоску частот для живого общения. При этом телефонный разговор можно вести одновременно с высокоскоростной передачей данных, а не выбирать одно из двух. Более того, даже если у вас отключат электричество, обычная "старая добрая" телефонная связь будет работать по-прежнему и с вызовом электрика у вас ни каких проблем не возникнет. Обеспечение такой возможности было одним из разделов оригинального плана разработки ADSL.

Одним из основных преимуществ ADSL над другими технологиями высокоскоростной передачи данных является использование самых обычных витых пар медных проводов телефонных кабелей. Совершенно очевидно, что таких пар проводов насчитывается гораздо больше (и это еще слабо сказано), чем, например, кабелей, проложенных специально для кабельных модемов. ADSL образует, если можно так сказать, "наложенную сеть".

ADSL является технологией высокоскоростной передачи данных, но насколько высокоскоростной? Учитывая, что буква "А" в названии ADSL означает "asymmetric" (асимметричная), можно сделать вывод, что передача данных в одну сторону осуществляется быстрее, чем в другую. Поэтому следует рассматривать две скорости передачи данных: "нисходящий" поток (передача данных от сети к вашему компьютеру) и "восходящий" поток (передача данных от вашего компьютера в сеть).

Максимальная скорость приёма - DS (down stream) и передачи - US (up stream), зависит от многих факторов, зависимость от которых, мы постараемся рассмотреть позднее. В классическом варианте, в идеале скорость приёма и передачи зависит и обусловлена DMT (Discrete Multi-Tone) разбиением полосы пропускания от 4 кГц до 1,1 Мгц на 256 каналов, каждый шириной по 4 кГц. Эти каналы в свою очередь представляют собой 8 цифровых потоков T1, E1. Для передачи down stream используется 4 T1,E1 потока, общая максимальная пропускная способность которых составляет 6,144Мбит/сек - в случае T1 или 8,192Мбит/сек в случае E1. Для передачи up stream один поток T1 - 1,536 Мбит/с. Указаны предельные максимальные скорости без учёта накладных расходов, в случае классического ADSL. Каждый поток снабжается кодом исправления ошибок (ECC) путём введения дополнительного бита.

Теперь рассмотрим, как происходит реальная передача данных на следующем примере. Информационные IP-пакеты, генерируемые как в локальных сетях клиентов, так и персональными компьютерами, непосредственно подключенными к Internet, будут поступать на вход ADSL модема в обрамлении стандарта Ethernet 802.3. Абонентский модем разбивает и "укладывает" содержимое кадров Ethernet 802.3 в ячейки АТМ, снабжает последние адресом назначения и передает их на выход ADSL-модема. Тот в соответствии со стандартом Т1.413 "инкапсулирует" АТМ-ячейки в цифровой поток E1,T1, а затем трафик по телефонной линии поступает на DSLAM. Станционный концентратор DSL multiplexor - DSLAM, осуществляет процедуру "восстановления" АТМ-ячеек из формата пакетов Т1.413 и направляет их по протоколу ATM Forum PVC (Permanent Virtual Circuit) в подсистему магистрального доступа (АТМ-сеть), которая и доставляет АТМ-ячейки по указанному в них адресу, т. е. на один из центров предоставления услуг. При реализации услуги доступа в Internet, ячейки поступают на маршрутизатор Internet-провайдера, выполняющий функцию терминального устройства в постоянном виртуальном канале (PVC) между абонентским терминалом и узлом Internet-провайдера. Маршрутизатор производит обратное (по отношению к абонентскому терминалу) преобразование: собирает поступающие ячейки АТМ и восстанавливает исходный кадр формата Ethernet 802.3. При передаче трафика из центра предоставления услуг к абоненту осуществляются совершенно аналогичные преобразования, только в обратном порядке. Другими словами, между портом Ethernet абонентского терминала и виртуальным портом маршрутизатора создается "прозрачная" локальная сеть протокола Ethernet 802.3, и все подключенные к абонентскому терминалу компьютеры воспринимают маршрутизатор Internet-провайдера как одно из устройств локальной сети.

Общим знаменателем при оказании услуг доступа в Internet является протокол сетевого уровня IP. Поэтому цепочку протокольных преобразований, осуществляемых в сети широкополосного доступа, можно представить следующим образом: клиентское приложение - пакет IP - кадр Ethernet (IEEE 802.3) - ячейки ATM (RFC 1483) - модулированный сигнал ADSL (T1.413) - ячейки ATM (RFC 1483) - кадр Ethernet (IEEE 802.3) - пакет IP - приложение на ресурсе в Internet.

Как уже было упомянуто выше, заявленные скорости, возможны только в идеальном варианте и без учёта накладных расходов. Так в потоке E1 при передаче данных один канал (зависит от используемого протокола) используется для синхронизации потока. И в итоге максимальная скорость с учётом накладных расходов составит Down stream - 7936Кбит/сек. Существуют и другие факторы, оказывающие значительное влияние на скорость и стабильность соединения. К таким факторам относятся: протяжённость линии (пропускная способность линии DSL обратно пропорциональна длине абонентской линии) и сечение провода. Характеристики линии ухудшаются с увеличением его длины и уменьшении сечения провода. Так же на скорость передачи данных влияет общее состояние абонентской линии, наличие скруток, кабельных отводов. Самыми "вредными", факторами, напрямую влияющими на возможность установки соединения ADSL, является наличие на абонентской линии Пупиновских катушек, а так же большого количества отводов. Ни одна из технологий DSL не может быть использована на линиях, имеющих Пупиновские катушки. Идеально при проверке линии не только определить наличие пупиновских катушек, но и найти точное место их установки (все равно ведь придется искать катушки и снимать их с линии). Пупиновская катушка, используемая в аналоговых системах телефонной связи, представляет собой катушку индуктивности 66 или 88 мГн. Исторически Пупиновские катушки использовались в качестве конструктивного элемента длинной (более 5,5 км) абонентской линии, позволяющего улучшить качество передаваемых звуковых сигналов. Под кабельным отводом обычно понимается участок кабеля, который подключен к абонентской линии, но не входит в прямое соединение абонента с телефонной станцией. Кабельный отвод обычно подключен к основному кабелю и образует разветвление в форме буквы "Y". Часто бывает так, что кабельный отвод идет к абоненту, а основной кабель идет дальше (при этом данная пара кабеля должна быть разомкнута на конце). Однако на пригодность конкретной абонентской линии для использования технологии DSL влияет не сколько сам факт наличия подключения, сколько длина самого кабельного отвода. До определенной длины (порядка 400 метров) кабельные отводы не оказывают значительного влияния на xDSL. Кроме того, кабельные отводы по-разному воздействуют на разные технологии xDSL. Например, технология HDSL допускает наличие кабельного отвода до 1800 метров. Что касается ADSL, то кабельные отводы не препятствуют самому факту организации высокоскоростной передачи данных по медной абонентской линии, но могут сузить полосу пропускания линии и, соответственно, снизить скорость передачи.

В плюсах высокочастотного сигнала, дающего возможность цифровой передачи данных, лежат его же минусы, а именно подверженность к воздействиям внешних факторов (различные наводки от сторонних электромагнитных приборов), а так же возникающие физические явления в лини при передаче. Увеличение ёмкостных характеристик канала, возникновение стоячих волн и отражений, изоляционные характеристики линии. Все эти факторы приводят к возникновению постороннего шума на линии, и более быстрому затуханию сигнала и как следствие к уменьшению скорости передачи данных и уменьшение протяжённости линии пригодной для передачи данных. Некоторые значения характеристик линии ADSL, по которым напрямую можно судить о качестве телефонной линии способен дать сам ADSL модем. Почти во всех моделях современных ADSL модемов, содержится информация о качестве соединения. Чаще всего вкладка Status->Modem Status. Примерное содержание (может меняться в зависимости от модели и производителя модема) следующее:

Modem Status

Connection Status Connected
Us Rate (Kbps) 511
Ds Rate (Kbps) 2042
US Margin 26
DS Margin 31
Trained Modulation ADSL_2plus
LOS Errors 0
DS Line Attenuation 30
US Line Attenuation 19
Peak Cell Rate 1205 cells per sec
CRC Rx Fast 0
CRC Tx Fast 0
CRC Rx Interleaved 0
CRC Tx Interleaved 0
Path Mode Interleaved
DSL Statistics

Near End F4 Loop Back Count 0
Near End F5 Loop Back Count 0

Поясним некоторые из них:

Connection Status Connected - статус соединения
Us Rate (Kbps) 511 - скорость исходящего потока Up Stream
Ds Rate (Kbps) 2042 - скорость нисходящего потока Down Stream
US Margin 26 - Уровень шума исходящего соединения в db
DS Margin 31 - Уровень шума нисходящего соединения в db
LOS Errors 0 -
DS Line Attenuation 30 - Затухание сигнала в нисходящем соединении в db
US Line Attenuation 19 - Затухание сигнала в исходящем соединении в db
CRC Rx Fast 0 - кол-во нескорректированных ошибок. Есть еще и FEC (скорректированные) и HEC - ошибки
CRC Tx Fast 0 - кол-во нескорректированных ошибок. Есть еще и FEC (скорректированные) и HEC - ошибки
CRC Rx Interleaved 0 - кол-во нескорректированных ошибок. Есть еще и FEC (скорректированные) и HEC - ошибки
CRC Tx Interleaved 0 - кол-во нескорректированных ошибок. Есть еще и FEC (скорректированные) и HEC - ошибки
Path Mode Interleaved - Режим коррекции ошибок включен (Path mode Fast - выключен)

По этим значениям можно судить, а так же контролировать самостоятельно, о состоянии линии. Значения:

Margin - SN Margin (Signal to Noise Margin or Signal to Noise Ratio). Уровень шума помех, зависит от множества различных факторов-намокания, количества и протяжённости отводов, синхронность линии, "распаренность-битость" кабеля, наличие скруток, качество физических соединений. При этом происходит снижение сигнала исходящего потока ADSL (Upstream) вплоть до его полного отсутствия и, как следствие, потерей ADSL модемом синхронизации

Line Attenuation - величина затухания (чем больше расстояние от DSLAMa, тем больше величина затухания. Чем больше частота сигнала, а следовательно скорость соединения тем больше величина затухания).

    Доступ по цифровым каналам с использованием технологии xDSL - возможность получения высоких скоростей передачи данных при относительно невысокой стоимости оборудования с использованием обычной телефонной сети. Обычные телефонные кабели становятся высокоскоростными цифровыми каналами, причем скорость передачи данных зависит только от качества и протяженности линии, соединяющих пользователя и провайдера.

В аббревиатуре xDSL символ "х" используется для обозначения первого символа в названии конкретной технологии, а DSL обозначает цифровую абонентскую линию (Digital Subscriber Line).

Существующие типы технологий хDSL, различаются в основном по используемой форме модуляции и скорости передачи данных, которая может достигать 52 Мбит в секунду для технологии VDSL (на хорошей линии связи и расстоянии до 1.5 км). На сегодняшний день наиболее распространена технология ADSL (Asymmetric Digital Subscriber Line - Асимметричная цифровая абонентская линия). Для передачи данных используется обычная телефонная пара, но при этом организуются три информационных канала - "нисходящий" поток передачи данных (downstream) со скоростью обмена до 8 Мбит/сек, "восходящий" поток передачи данных (upstream) со скоростью обмена до 1.5 Мбит/сек. и канал обычной телефонной связи (POTS - Plain Old Telephone Service). При чем, канал телефонной связи выделяется с помощью фильтров, что гарантирует работу вашего телефона даже при неисправности соединения ADSL. В результате вы получаете круглосуточный доступ в сеть Интернет с сохранением нормальной работы обычного телефона. "Асимметричность" технологии ADSL попросту выражается в невысокой стоимости используемого оборудования и значительной разнице в скорости передачи данных "к вам" и "от вас". Дальнейшее развитие технологии ADSL привело к появлению ее модификаций отличающихся повышенной скоростью передачи данных (ADSL2, ADSL2+)

    Подключение к интернет-провайдеру выполняется с помощью ADSL-модема. По способу подключения к компьютеру модемы можно разделить на USB и ETHERNET - модемы. Один и тот же модем может иметь как USB, так и Ethernet порт (несколько портов). Модемы USB, как правило, дешевле, но предполагают возможность использования только в режиме моста (бридж). В данном режиме модем работает аналогично dial-up модемам. Вместо стандартного удаленного подключения используется подключение PPPoE (точка-точка через Ethernet). USB - модемы в чистом виде сейчас практически не выпускаются.
    Более распространено подключение к компьютеру через Ethernet, что предполагает наличие в нем сетевой карты. При таком подключении возможно использование модема как в режиме моста, так и в режиме маршрутизатора. Современный ADSL - модем, практически, является специализированным компьютером, со своим программным обеспечением, выполняющим не только маршрутизацию (routing) и трансляцию сетевых адресов (Network Address Translation или NAT), но и поддержку управления устройством через HTTP и (или) Telnet протоколы, службы разрешения доменных имен (DNS), динамического конфигурирования узлов (DHCP), Firewall (брандмауэр), TFTP-сервер и т.п. Естественно, все эти внутренние функции доступны, если модем работает в режиме маршрутизатора. Ниже приведен пример простой схемы подключения домашней локальной сети к интернет с использованием модема Zyxel P660RU2 в режиме маршрутизатора.

Модем Zyxel P660RU имеет всего 1 порт Ethernet, поэтому, для подключения нескольких компьютеров используется коммутатор (switch). Если же модем имеет несколько портов, количество которых достаточно для подключения ваших компьютеров, коммутатор не нужен. Модем имеет IP - адрес, равный 192.168.1.1 на интерфейсе LAN. Клиентские компьютеры имеют адреса 192.168.1.2, 192.168.1.3, и 192.168.1.33. Маска сети - 255.255.255.0. Модем используется в режиме маршрутизатора с NAT. DHCP не используется, настройки TCP/IP клиентских компьютеров выполняются вручную.

Если нет доступа в интернет попробуйте:

1. Проверить, есть ли физическое подключение к оборудованию провайдера. Практически все модемы имеют панель индикации, на которой отображается состояние ADSL-линии. Индикатор состояния обычно подписан как "ADSL", "DSL", "Link", "CD" и т.п.
В случае нормального функционирования оборудования вашего модема, линии передачи данных и оборудования провайдера, на панели индикации модема должен светиться упомянутый индикатор. Если же этого нет, попробуйте сделать следующее:

  • выключите и снова включите модем. Если ситуация не изменилась, попробуйте отключить от телефонной линии все другие устройства (телефоны, микрофильтры, сплиттер) и подключить модем к телефонной линии напрямую. Если индикация ADSL появится - разбирайтесь с отключенным оборудованием.
  • проверьте, есть ли гудок в телефонной линии. Если нет - попробуйте отключить от телефонной линии все устройства, и подключить заведомо исправный телефон. Если гудок не появится - обращайтесь на местный телефонный узел.
  • попробуйте, если есть такая возможность, заменить модем на заведомо исправный. Если такой возможности нет, и выполнение предыдущих пунктов не привело к появлению индикации линии ADSL - обращайтесь в службу технической поддержки вашего провайдера.

    2. Если есть индикация работоспособного состояния линии ADSL, но нет доступа в интернет, возможной причиной может быть отсутствие PPPoE-подключения к провайдеру. В режиме моста (бридж или bridge) такое подключение выполняется средствами операционной системы. В режиме маршрутизатора - программным обеспечением модема. В зависимости от модели модема, на панели индикации может быть светодиод активности подключения, обозначенный как "Internet", "PPP", "PPPoE", "WAN" и т.п. Причиной отсутствия подключения может быть неправильное имя пользователя и (или) пароль для подключения к сети провайдера. Если они правильные, возможно исчерпан баланс лицевого счета, или ваша учетная запись блокирована провайдером по каким-то другим причинам. Обращайтесь в службу технической поддержки.
    3. Если линия ADSL и PPPoE-подключение в норме, но доступа в интернет нет, попробуйте выполнить следующее:

  • убедитесь в исправности кабеля, которым подключен модем к вашему компьютеру. Для большинства модемов предусмотрена индикация физического подключения - светодиоды "Ethernet", "LAN" или "USB". Если индикатор не светится, возможно, неисправен порт модема, соединительный кабель или порт к которому подключен модем.
  • если все подключения в норме - проблема в сетевых настройках.     Все дальнейшие проверки и настройки будут выполняться в консоли Windows. Рассматривается случай, когда модем используется в режиме маршрутизатора. Сетевые настройки можно получить командой:
    ipconfig /all
    В результате получим:

    NvidiaNforceNetAdapter - Ethernet адаптер:
    DNS-суффикс этого подключения. . :
    Описание. . . . . . . . . . . . : NVIDIA nForce Networking Controller
    Физический адрес. . . . . . . . . : 00-18-F3-EF-60-DC
    Dhcp включен. . . . . . . . . . . : нет
    IP-адрес. . . . . . . . . . . . : 192.168.1.33
    Маска подсети. . . . . . . . . . : 255.255.255.0
    Основной шлюз. . . . . . . . . . : 192.168.1.1
    DNS-серверы. . . . . . . . . . . : 192.168.1.1

        Строка "IP-адрес" одержит IP-адрес компьютера, "Маска подсети" - маску, совпадающую с маской маршрутизатора (стандартно 255.255.255.0). В строке "Основной шлюз" должен быть IP-адрес вашего модема. В строке "DNS-серверы" - адреса рабочих DNS-серверов или IP-адрес модема, если для разрешения имен используется его DNS-сервер. Возможна комбинация этих адресов. Если у вас возникли подозрения относительно работоспособности DNS - серверов провайдера, попробуйте вручную сменить их адреса в настройках TCP/IP, на адреса

    208.67.222.222 или 208.67.220.220 - серверы OpenDNS
    8.8.8.8 или 8.8.4.4 - серверы Google
    лучше выбрать комбинацию сервера Google и сервера OpenDNS.

        Одним из основных инструментов диагностики сетевых проблем являются команды проверки доступности узла ping.exe и команда трассировки маршрута к выбранному узлу tracert.exe . При использовании этих команд в брандмауэре должен быть разрешен ICMP-протокол, а еще лучше, на время диагностирования проблем, брандмауэр отключить.

    Краткую справку по использованию ping.exe можно получить по команде:
    ping /? Примеры:

    ping yandex.ru - проверить доступность узла yandex.ru
    ping 192.168.1.1 - проверить доступность нашего маршрутизатора.
    При выполнении ping без указания ключей, выполняется 4-х кратная посылка ICMP-сообщений (эхо-запрос) узлу, заданному в командной строке, и прием ответа с анализом времени отклика (эхо-ответ). В поле данных запроса и ответа содержится повторяющаяся строка символов латинского алфавита (от a до w). По умолчанию длина данных в Windows - 32 байта. Пример результата выполнения " ping yandex.ru":

    Обмен пакетами с yandex.ru по 32 байт:

    Ответ от 77.88.21.11: число байт=32 время=5мс TTL=57

    Ответ от 77.88.21.11: число байт=32 время=2мс TTL=57
    Ответ от 77.88.21.11: число байт=32 время=1мс TTL=57

    Статистика Ping для 77.88.21.11:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь),
    Приблизительное время передачи и приема:
    наименьшее = 1мс, наибольшее = 5мс, среднее = 2мс

        Статистика Ping дает полную картину обмена между вашим компьютером и пингуемым узлом. Поле TTL в эхо-ответе зависит от реализации IP-протокола отвечающего узла (упрощенно, можно считать, что от типа и версии операционной системы). Необходимо учитывать, что некоторые узлы настроены таким образом, что на ping не отвечают (microsoft.com, например)

    Еще примеры использования ping.exe:

    ping -t yandex.ru - выполнять ping до нажатия комбинации CTRL-C или CTRL-Break
    ping -n 1000 -l 500 192.168.1.1 - выполнить ping 1000 раз с использованием сообщений, длиной 500 байт.
    ping -a -n 1 -r 9 yandex.ru - выполнить ping 1 раз (ключ -n 1), определять адрес по имени (ключ -a), выдавать маршрут для первых 9 переходов (-r 9)

        Использование ключа -r , в какой-то степени, позволяет получить трассировку маршрута, аналогичную получаемой с помощью команды tracert.exe, но максимальное число переходов может быть равно 9, чего, обычно, бывает недостаточно. Поэтому желательно использовать tracert.exe.

    tracert google.com - трассировка маршрута к узлу google.com

    Результат:


    Трассировка маршрута к google.com с максимальным числом прыжков 30:
    1 1 ms 2 498 ms 444 ms 302 ms ppp83-237-220-1.pppoe.mtu-net.ru
    3 * * * .
    4 282 ms * * a197-crs-1-be1-53.msk.stream-internet.net
    5 518 ms 344 ms 382 ms ss-crs-1-be5.msk.stream-internet.net
    6 462 ms 440 ms 335 ms m9-cr01-po3.msk.stream-internet.net
    7 323 ms 389 ms 339 ms bor-cr01-po4.spb.stream-internet.net
    8 475 ms 302 ms 420 ms anc-cr01-po3.ff.stream-internet.net
    9 334 ms 408 ms 348 ms 74.125.50.57
    10 451 ms 368 ms 524 ms 209.85.255.178
    11 329 ms 542 ms 451 ms 209.85.250.140
    12 616 ms 480 ms 645 ms 209.85.248.81
    13 656 ms 549 ms 422 ms 216.239.43.192
    14 378 ms 560 ms 534 ms 216.239.43.113
    15 511 ms 566 ms 546 ms 209.85.251.9
    16 543 ms 682 ms 523 ms 72.14.232.213
    17 468 ms 557 ms 486 ms 209.85.253.141
    18 593 ms 589 ms 575 ms yx-in-f100.google.com

    Трассировка завершена.

        Напомню, как это работает. При разработке IP-протокола, для достижения узлов, адреса которых не принадлежат текущей сети, была предусмотрена маршрутизация, предназначенная для передачи IP-пакетов между разными сетями. Когда вы выполняете команду "tracert google.com", сначала определяется IP-адрес google.com (74.125.45.100), который не принадлежит диапазону адресов вашей локальной сети, задаваемого значением IP-адреса сетевой карты и маской подсети (192.168.1.0-192.168.1.255). Такой пакет будет отправлен маршрутизатору, адрес которого, задан в качестве шлюза по умолчанию. В результатах трассировки вы видите его первым (192.168.1.1). Затем (упрощенно конечно) работает тот же алгоритм - если узел google.com не достижим локально, определяется, через какой маршрутизатор должен быть отправлен пакет, и выполняется его отправка.
        В результатах трассировки, приведенных выше для достижения узла google.com понадобилось 18 переходов. А теперь представьте, что на узле номер 10 (209.85.255.178) для достижения узла google.com ошибочно прописан маршрут не к узлу номер 11, а например, к узлу номер 5. Результатом такой ошибки стало бы зацикливание и вечное циркулирование пакета между узлами 5 и 10. Для того, чтобы подобная ситуация не возникала, разработчики IP-протокола предусмотрительно ввели в заголовок IP-пакетов поле TTL ("Время жизни" - Time To Live) длиной в 1 байт, принимающее значения от 0 до 255. На самом деле это поле не имеет отношения к времени, а является счетчиком числа возможных переходов при передаче маршрутизируемого пакета. Каждый маршрутизатор, получив пакет, вычитает из этого поля 1 и проверяет значение счетчика TTL. Если значение стало равным нулю, такой пакет отбрасывается и отправителю посылается ICMP-сообщение о превышении времени жизни ("Time Exceeded" - значение 11 в заголовке ICMP).
        При выполнении команды tracert.exe сначала выполняется отправка ICMP пакета с полем TTL равным 1 и первый в цепочке маршрутизатор (ваш модем) обнуляет TTL и сообщает о превышении времени жизни. Эта последовательность повторяется трижды, поэтому в строке результата, формируемой tracert.exe, после номера перехода отображаются три значения времени отклика:
    1     1 ms     1 - номер перехода (1 - первый маршрутизатор, т.е. ваш модем)
    1 ms 192.168.1.1 - его адрес (или имя)
        Затем процедура повторяется, но TTL устанавливается равным 2 - ваш маршрутизатор его уменьшит до 1 и отправит следующему в цепочке - т.е. маршрутизатору провайдера. Тот после вычитания 1 обнулит TTL и сообщит о превышении времени жизни. И так далее, пока не будет достигнут заданный узел (google.com) или не будет обнаружена неисправность, не позволяющая доставить пакет получателю.
        В результатах трассировки могут присутствовать записи об узлах в виде звездочек (узел номер 3 в примере) - это не является признаком неисправности и скорее всего, говорит о том, что настройки данного узла запрещают ICMP-протокол из соображений безопасности (борьба с DDoS - атаками)

        Упоминаемая выше команда ping имеет ключ -i . Он позволяет устанавливать значение TTL для эхо-запроса, т.е. реализовать ту же трассировку маршрута при выполнении ping -i c последовательным увеличением -i от единицы.
    ping -i 1 yandex.ru
    ping -i 2 yandex.ru
    ...

        В параметрах командной строки tracert.exe иногда удобнее указывать не имя узла, а любой реальный не приватный IP-адрес. К примеру, команды:

    Ping yandex.ru
    tracert yandex.ru

    Могут завершиться сообщением о том, что не удается разрешить имя yandex.ru (неизвестный узел yandex.ru). Причиной этого может быть, как неработоспособность используемого DNS-сервера (серверов), неверный его адрес, остановленная служба "DNS-клиент", неправильные настройки брандмауэра, происки подхваченного вируса и т.п. А возможно и отсутствие доступа в интернет . Можно воспользоваться командой:

    Tracert 77.77.77.77
    IP - адрес 77.77.77.77 взят безотносительно реально существующего узла. Главное, чтобы это был правильный, не зарезервированный для локальных сетей ("белый") IP - адрес. Если результаты трассировки для него покажут доступные узлы после 2-го перехода (после вашего модема и маршрутизатора провайдера) - то с большой долей вероятности можно предположить, что доступ в сеть провайдера существует, и надо разбираться с разрешением имен.

    Еще несколько признаков:

    Если после ping или tracert по команде:
    arp -a
    вы увидите, что в ARP-кэше присутствует IP и аппаратный (MAC) адрес маршрутизатора, то между клиентской машиной и маршрутизатором (модемом) тракт исправен, протоколы Ethernet и IP работают.

    Если трасса завершается до вашего модема, но в ARP-кэше есть вышеуказанная запись, то наверняка блокируется ICMP-протокол настройками брандмауэра вашего компьютера или маршрутизатора.

    Если трасса завершается после вашего модема, - проблема на участке между вами и провайдером.

    Если трассировка дает доступность узлов после сети провайдера, то наиболее вероятно, что проблемы в настройках на клиентском компьютере.

    Пока по этой теме все, но планируется продолжение.

        Здесь я собрал некоторые полезные вещицы, которые могут помочь пользователям "Стрим", и не только "Стрим".
        В рамках стандартных безлимитных тарифов, пользователь получает доступ в Интернет по технологии ADSL (ADSL2+). IP-адрес реальный, но динамический. Используется фильтрация трафика - TCP портов 21, 23, 25, 69, 80, 135-139, 445, 8080, 254, 255, 161 UDP - 69, 135-139, 161. Это делается для обеспечения безопасности Widows-систем, предотвращения спам-активности и защиты абонентского оборудования. Другими словами, на стороне клиента извне недоступны сетевые ресурсы Windows, стандартно настроенные HTTP- FTP-, TFTP-, SMTP- серверы. Иногда динамический адрес и фильтрация трафика создают некоторые проблемы, решение которых (бесплатное) предлагается ниже.

    Решаем проблему динамического IP-адреса.

        Идем на сайт DynDNS.com . Для работы с уже имеющейся или новой учетной записью используется кнопка "Sign In" (в верхней правой части страницы).
    Создаем свою учетную запись - жмем "Create Account" . При регистрации выбираем бесплатный доступ (free account). Форма регистрации периодически меняется, но обязательным является ввод желаемого имени пользователя, пароль и ваш E-mail. На указанный при регистрации e-mail приходит письмо с ссылкой для подтверждения. Подтверждаем и входим на сайт. Жмем кнопку "My Services" в левой части экрана и затем выбираем в меню (слева) пункт "Host Services"

    Жмем "Add New hostname" и заполняем форму, где указываем желаемое имя компьютера, желаемый домен и IP- адрес, неважно какой, лишь бы действительный, например, предлагаемый самой формой, ваш текущий адрес. Жмем кнопку "Create Host" . Если выбранное имя никем не занято, "Hostname" будет создано.

        Теперь остается скачать и установить специальную программу-клиент DynDNS Updater
    Заходим в раздел "Support" - подраздел "Update Clients"

        Скачиваем клиента под нашу операционную систему. При установке в Windows (DynUpSetup.exe) вам будет предложено установить DynDNS-клиент в качестве службы. Это позволит ему запускаться до входа пользователя в систему. В противном случае, при первом запуске, после установки, клиент пропишется в автозагрузке, и будет выполняться после входа пользователя в систему. Я не люблю лишние службы на компьютере и установку в качестве службы не использовал.

        Для входа вам понадобится ввести имя пользователя и пароль, полученные при регистрации на DynDNS.com. После чего вы увидите список ваших имен HostName, созданных в на сайте DynDNS.com. Отмечаем галочками имена, обновление для которых будет выполняться клиентом. Количество имен ограничено для бесплатного аккаунта, о чем найдете информацию на сайте. Программа очень простая, основные настройки - на вкладке Advanced :

        Некоторые из современных ADSL-модемов имеют встроенный DynDNS-клиент. Настройка обычно очень простая, - заполняем имя пользователя и пароль полученные при регистрации на DynDns.com и имя вашего Host. Пример для Zyxel P660RU2

        Использование клиента DynDNS модема иногда бывает очень полезным. Компьютер можно удаленно выключать и включать, как описано в примере "Технология Wake On Lan" раздела "Сеть", а также развернуть на нем нужные вам серверы, подключаться к его рабочему столу и управлять им, находясь где угодно, был бы доступ в Интернет.

    Решаем проблему перехода на ADSL2+.

        Небольшое отступление. В конце 2008 года в Стриме появились довольно привлекательные тарифы с подключением по технологии ADSL2+. Кроме того, с марта 2009 изменились действующие тарифы, кроме тарифов линейки ADSL2+. Разница в оплате по моему безлимитному тарифу "Стрим 6 Хит" (скорость передачи 6144/768 кб/с) и "СТРИМ 10 ХИТ 2+" (скорость 10240/896 кб/с) составила 70 руб. Мой модем Zyxel P660 RU2 поддерживает ADSL2+, поэтому проблем с переходом на новый тариф быть не должно - я и перешел. Как и многие другие абоненты Стрим. О проблемах с переходом на ADSL2 немало писалось на многих тематических форумах, народ плюется на Стрим, многие меняют провайдера, короче, все оказалось совсем не просто. Сначала я тоже слегка озверел, поскольку в режиме ADSL2+ модем мог по полчаса пытаться установить соединение, и в случае, когда это ему удавалось скорость исходящего потока (upstream) могла быть 9 кб/сек вместо 896 кб/сек. Иногда, правда, доходила до 500 кб/сек, но это случалось редко, и как бы то ни было, такая скорость уж очень далека от заявленной для данного тарифа. Правда, скорость нисходящего потока (downstream) была практически всегда соответствующей тарифному плану. Как потом выяснилось, у других абонентов могло быть и наоборот,- скорость upstream в норме, а downstream - никакая. Бывали случаи, когда невозможно было выполнить ADSL-подключение часами. Через несколько дней вдруг все заработало, но ненадолго. Затем я заметил, что скорость упала, стала такой же, как на моем предыдущем тарифе. Смотрю состояние модема - так и есть - скорость 6144/768 и DSL mode - G.DMT, т.е. я получаю свой старый "Стрим 6 Хит", хотя в личном кабинете вижу, что мой текущий тариф - "Стрим 10 Хит2"
        Конечно, все это не радует. Даже у меня (а я пользуюсь Стримом около 5 лет) появилась желание сменить провайдера. Но, в конце концов, остыл и решил подождать, - дело для Стрима новое, бывают накладки. Сам технарь, понимаю. Приблизительно через месяц позвонил в техподдержку Стрима и попросил все же включить ADSL2+. Через 20 минут связь пропала, затем восстановилась, и вернулась старая картина - скорость по исходящему потоку никакая. Из сообщений на форумах я сделал вывод - "наезжать" на техподдержку и инженеров Стрима - занятие неблагодарное и, я бы сказал, вредное для собственной нервной системы. И потом - технология для них новая, отработанные стандартные решения не работают, и переход на ADSL2+ по-видимому, выполнялся слишком поспешно и без должных мероприятий, как тестирование настроек, проверка на разных моделях модемов, обучение персонала и т.п.

        Можно предположить, что ADSL-модемы поддерживающие режим ADSL2 поставляются, в основном, с конфигурацией, расcчитанной на работу в обычном ADSL. Также, можно предположить, что если подогнать настройки модема к настройкам оборудования провайдера, (DSLAM -Digital Subscriber Line Access Multiplexer - мультиплексор доступа цифровой абонентской линии), то все заработает стабильно и на требуемой скорости. В моем случае так и оказалось.

        Для изменения настроек модема подключаемся к нему с помощью telnet.exe:
    telnet 192.168.1.1
    Модем запросит пароль
    Password:
    Вводим пароль администратора
    Для просмотра действующих настроек модема вводим команду:
    sys view autoexec.net
    Модем выдаст содержимое файла autoexec.net
    sys errctl 0
    sys trcl level 5
    sys trcl type 1180
    sys trcp cr 64 96
    sys trcl sw off
    sys trcp sw off
    ip tcp mss 512
    ip tcp limit 2
    ip tcp irtt 65000
    ip tcp window 2
    ip tcp ceiling 6000
    ip rip activate
    ip rip merge on
    ppp ipcp compress off
    sys wdog sw on
    ip icmp discovery enif0 off
    bridge mode 1
    sys quick enable
    wan adsl rate off
    ether driver qroute 2
    wan dmt db tlb e

    Для настроек ADSL важны команды из группы wan . Команда "wan dmt..." относится к настройкам обычного ADSL, а для ADSL2 она должна иметь вид "wan dmt2..."
    Внятного описания команды "wan dmt2 db..." я не нашел, но предположил, что с ее помощью выполнятся загрузка выбранного профиля оптимальных настроек модема под DSLAM провайдера. Возможные варианты настроек для конкретного модема можно получить командой:
    wan dmt2 db disp
    Для P660RU2 имеем результат:
     
    db_sel=ff db_final_sel=4
    No    Compare    Reset    Pre       Mid       After         Help
    0                                           
    1                                                   CTLM Database
    2                                                   GSPN Database
    3                                                   BCM Database
    4                                                   IFNEON Database
    5                                                   TI Database

     
    Итого - 5 вариантов, 0 - не используется, 1-5 можно попробовать.
    (Сокращенно, производители оборудования - 1 = CTLM = Centillium, 2 = GSPN = Globespan, 3 = BCM = Broadcom, 4 = IFNEON = Infineon)
    Команда для загрузки варианта настроек:
    wan dmt2 db tlb x - где x от 1 до 5
    Последовательно выполняем:
    wan dmt2 db tlb 1
    Сбрасываем линию
    wan adsl reset
    После установки соединения смотрим состояние канала:
    wan adsl chandata
    Вы увидите данные о соединении:
    DSL standard: ADSL2+ Mode -Режим ADSL2+.
    near-end bit rate: 10240 kbps - скорость к вам.
    far-end bit rate: 1020 kbps - скорость от вас.

        Когда вы определитесь, с каким вариантом у вас наиболее стабильная работа, нужно записать эту команду в модем, чтобы не вводить ее каждый раз после выключения. Для этого вводим команду:
    sys edit autoexec.net
    Видим сообщение:
    EDIT cmd: q(uit) x(save & exit) i(nsert after) d(elete) r(eplace) n(ext)
    Это подсказка по командам редактирования:
    q - выход без сохранения результатов;
    x - выход с сохранением;
    i - вставить строку после выведенной;
    r - заменить текущую строку;
    n - вывести следующую строку. Можно просто нажимать ENTER;

            Теперь жмем ENTER до появления строчки
    wan dmt db tlb e
    - жмем r , не нажимая после нее ENTER
    - набираем команду для выбранного варианта:
    wan dmt2 db tlb 3 - для варианта 3
    - Нажимаем ENTER и жмем "x" для сохранения и выхода из редактирования.
    Результат можно проверить командой sys view autoexec.net
    sys view autoexec.net
    sys errctl 0
    sys trcl level 5
    sys trcl type 1180
    sys trcp cr 64 96
    sys trcl sw off
    sys trcp sw off
    ip tcp mss 512
    ip tcp limit 2
    ip tcp irtt 65000
    ip tcp window 2
    ip tcp ceiling 6000
    ip rip activate
    ip rip merge on
    ppp ipcp compress off
    sys wdog sw on
    ip icmp discovery enif0 off
    bridge mode 1
    sys quick enable
    wan adsl rate off
    ether driver qroute 2
    wan dmt2 db tlb 3

    При правильной работе в режиме ADSL2+ на тарифе "Стрим 10 Хит2" состояние модема должно быть вроде этого:

    На всякий случай некоторые команды для P660RU2:

    Список команд каждого уровня можно получить, введя знак вопроса или неверную команду:
    wan - выдаст список подкоманд для wan, wan adsl - для уровня adsl команды wan. Для "wan dmt:" в прошивке данного модема подсказки нет. Можно набирать команды не полностью- "wan adsl chandata" и " w adsl c" - идентичны. Однако, есть информация, что в некоторых модемах сокращение не везде работает, а диагностики - никакой, поэтому лучше сокращенными вариантами команд не пользоваться, или пользоваться, контролируя их срабатывание.
    Возможно, кому-то поможет включение режима OLR (Online Reconfiguration), позволяющего изменять конфигурацию без разрыва подключения. Он должен поддерживаться оборудованием провайдера.
    wan dmt2 set olr x
    где
    x=0 - OLR выключен
    x=1 - OLR включен
    x=2 - SRA(Streamless Rate Adaptation) выключен.
    X=3 - SRA включен, возможна адаптация к существующей линии.

        Для оценки качества линии используется команда "wan adsl linedata":
    Состояние линии для исходящего потока (дальнего конца):
    wan adsl linedata far
    noise margin upstream: 11 db - при значении ниже 7 db наблюдалось неустойчивое соединение и низкая скорость upstream (хотя по информации с сайта Zyxel пределом помехоустойчивости является 6 db)
    output power downstream: 0 db
    attenuation upstream: 2 db
    tone 0- 31: 00 00 00 35 68 9a bb bc cc dd dd dc cc cb ba a9
    tone 32- 63: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 64- 95: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 96-127: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 128-159: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 160-191: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 192-223: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 224-255: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 256-287: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 288-319: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 320-351: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 352-383: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 384-415: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 416-447: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 448-479: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 480-511: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

    Состояние линии для потока к вам (ближнего конца):
    wan adsl linedata near
    noise margin downstream: 21 db - для моей линии в диапазоне 20-24 db
    output power upstream: 10 db
    attenuation downstream: 0 db
    tone 0- 31: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    tone 32- 63: 00 00 00 00 00 01 00 11 42 45 53 55 55 47 65 57
    tone 64- 95: 55 57 75 57 58 55 76 68 34 53 55 48 77 65 77 75
    tone 96-127: 55 65 45 57 65 77 74 44 76 76 57 77 55 88 55 97
    tone 128-159: 79 94 76 75 78 48 49 75 76 59 56 88 44 57 85 45
    tone 160-191: 55 55 73 58 76 53 45 53 55 67 45 54 57 76 55 55
    tone 192-223: 56 64 56 66 55 54 46 35 56 25 14 31 53 02 54 35
    tone 224-255: 15 54 33 02 31 04 15 00 11 01 30 55 41 33 14 46
    tone 256-287: 64 34 31 56 63 65 67 56 55 47 67 67 55 46 78 79
    tone 288-319: 69 58 89 99 79 76 97 98 79 76 98 79 89 87 79 74
    tone 320-351: 76 88 89 99 99 9a 89 49 98 49 77 a9 4a 99 a9 98
    tone 352-383: 6a 8a 86 86 a9 89 97 a9 97 98 9a a9 99 99 79 79
    tone 384-415: 88 97 88 46 88 94 99 74 88 98 87 87 88 59 99 98
    tone 416-447: 88 88 88 48 99 87 98 88 98 98 88 87 84 98 89 48
    tone 448-479: 86 48 47 98 68 88 88 88 88 88 89 98 88 88 48 88
    tone 480-511: 88 86 88 98 87 40 68 87 88 89 44 48 68 aa a8 80

        Noise Margin downstream (Предел помехоустойчивости при приеме данных) - используется в качестве критерия оценки состояния линии и определяет минимальный предел, при котором уровень сигнала выше уровня шума. Считается, если ADSL-модем тяжело синхронизируется с DSLAM, то следует снизить предел помехоустойчивости на коммутаторе.
    Output power downstream (Выходная мощность при приеме данных) - показывает выходную мощность при приеме данных в момент синхронизации модема с DSLAM.
    Attenuation downstream (Затухание при приеме данных) - показывает затухание при приеме данных в момент синхронизации модема с DSLAM (этот параметр должен быть

    Cisco 827-4V и Стрим.

       

  • Сброс пароля для CISCO IOS
  • Для сброса пароля на доступ к модему понадобится консольный кабель и программа Hyperterminal (входит в состав всех Windows). Консольный кабель подключается к консольному порту (разъему RJ-45 "Terminal") на модеме и к последовательному порту компьютера. Кабель можно изготовить самостоятельно, используя схему, которую найдете на сайте pinouts.ru.
    Подключение консольного кабеля выполняйте при отключенном электропитании устройств. Для обмена с консольным портом в HyperTerminal используйте параметры:

    Скорость - 9600 бит/с
    Биты данных - 8
    Четность - Нет
    Стоповые биты - 1
    Аппаратное управление потоком.

        После включения модема в окне терминала вы увидите сообщения о начале загрузки. Через 30-60 сек нажмите CTRL-Break, загрузка должна прекратиться и вы увидите приглашение Rom Monitor:

    rommon 1>
    Теперь нужно изменить значение конфигурационного регистра модема так, чтобы при загрузке CISCO IOS не использовалась сохраненная в модеме конфигурация (startup-config) с неизвестным нам паролем:

    rommon 1> confreg 0x2142

    Значение 0x2142 означает обход обработки startup-config. Перезагружаем Cisco командой reload (или reset). После начальной загрузки появится сообщение для выбора конфигурационного диалога:

    Would you like to enter the initial configuration dialog? :

    Отвечаем - No
    После чего появится стандартное приглашение для ввода команд (Router>). Для входа в привилегированный режим используем команду

    Router> enable

    Приглашение Router> поменяется на Router#
    Теперь можно скопировать сохраненную конфигурацию в качестве текущей (running-config):

    Router# сopy startup-config running-config
    Меняем пароль на новый, для чего задаем конфигурирование в терминале:

    Router# configure terminal
    Приглашение изменится, отражая уровень, на котором вы находитесь - Router# поменяется на Router (config)# . Для возврата на предыдущий уровень используем команду exit.
    Вводим новый пароль:
    Router (config)# enable secret
    Это новый пароль для привилегированного режима. Для доступа по telnet также нужно задать новый пароль, отличный от предыдущего:
    Router (config)# line vty 0 4
    Router (config-line)# password
    Route# (config-line)# exit
    Теперь у нас в качестве текущей конфигурации (running-config) используется ранее сохраненная конфигурация, с новыми паролями. Но в этой конфигурации все сетевые интерфейсы остановлены (administratively down). Поэтому для каждого из используемых интерфейсов нужно выполнить команду no shutdown . Список интерфейсов можно получить по команде:

    Router# show ip interface brief

    Для каждого интерфейса из полученного списка выполняем no shutdown. Пример для Ethernet0:
    Router (config)# interface Ethernet0
    Router (config-if)# no shutdown
    Router (config-if)# exit
    Router (config)#
    После запуска всех интерфейсов нужно вернуть стандартное значение конфигурационного регистра для загрузки startup-config:

    Router (config)# config-register 0x2102
    Router (config)# exit
    Теперь у нас текущая конфигурация (running-config) полностью готова к работе. Осталось скопировать ее в NVRAM-память Cisco для обработки при старте устройства (startup-config):

    Router (config)# copy running-config startup-config

        Для сохранения и загрузки конфигурации удобно пользоваться "Cisco TFTP Server", который можно взять с сайта CISCO или Устанавливаем его (по умолчанию установка выполняется в каталог "Program Files\Cisco Systems\Cisco TFTP Server") и запускаем.
    Для сохранения текущей конфигурации в файл myconfig.txt на сервере с IP 192.168.0.10:
    copy running-config tftp://192.168.0.10/myconfig.txt
    Для сохранения стартовой конфигурации в файл myconfig1.txt:
    copy startup-config tftp://192.168.0.10/myconfig1.txt
    Для загрузки в качестве текущей конфигурации файла myconfig.txt:
    copy tftp://192.168.0.10/myconfig.txt running-config
    Для загрузки в качестве стартовой конфигурации файла myconfig1.txt:
    copy tftp://192.168.0.10/myconfig1.txt startup-config
        Ниже приведено содержимое файла конфигурации для Стрим:

    !
    version 12.1
    no service pad
    service timestamps debug uptime
    service timestamps log uptime
    no service password-encryption
    ! hostname stream-gw
    ! logging rate-limit console 10 except errors
    enable secret TrxOXvO9bH8.
    enable password password
    ! clock timezone MSK 3
    ip subnet-zero
    no ip finger
    ip name-server 212.188.4.10
    ip name-server 195.34.32.116
    !
    no ip dhcp-client network-discovery
    vpdn enable
    no vpdn logging
    ! vpdn-group pppoe
    request-dialin
    protocol pppoe
    !
    !
    !
    !
    interface Ethernet0
    ip address 192.168.1.1 255.255.255.0
    ip nat inside
    no ip mroute-cache
    no cdp enable
    !
    interface ATM0
    no ip address
    no ip mroute-cache
    no atm ilmi-keepalive
    pvc 1/50
    encapsulation aal5snap
    protocol pppoe
    pppoe-client dial-pool-number 1
    !
    bundle-enable
    dsl operating-mode auto
    !
    interface Dialer1
    mtu 1492
    ip address negotiated
    ip nat outside
    encapsulation ppp
    ip tcp adjust-mss 1452
    dialer pool 1
    dialer-group 1
    no cdp enable
    ppp chap hostname pppXXXX@mtu
    ppp chap password XXXXXXX
    !
    ip classless
    ip route 0.0.0.0 0.0.0.0 Dialer1
    no ip http server
    !
    ip nat inside source list 101 interface Dialer1 overload
    access-list 101 permit ip any any
    dialer-list 1 protocol ip list 101
    no cdp run
    !
    line con 0
    transport input none
    stopbits 1
    line vty 0 4
    password password
    login
    !
    scheduler max-task-time 5000
    sntp server 192.43.244.18
    end

        Создаете в каталоге Program Files\Cisco Systems\Cisco TFTP Server текстовый файл с этим содержимым, и копируете его в running config, меняете пароль доступа в привилегированном режиме (enable secret) и пароль для telnet (enable password). При необходимости можно изменить адрес для интерфейса Ethernet, VPI и VCI для вашего провайдера, если это не Стрим (pvc 1/50 - для Стрим). И нужно ввести ваши имя пользователя и пароль для подключения к сети Стрим.
    ppp chap hostname pppXXXXXX@mtu - имя пользователя
    ppp chap password XXXXXXX - пароль
    Эти правки можно было сделать в созданном файле до копирования в running-config. После того, как убедитесь, что данная конфигурация работает, сохраните ее в startup-config.